1.Screening key genes of PANoptosis in hepatic ischemia-reperfusion injury based on bioinformatics
Lirong ZHU ; Qian GUO ; Jie YANG ; Qiuwen ZHANG ; Guining HE ; Yanqing YU ; Ning WEN ; Jianhui DONG ; Haibin LI ; Xuyong SUN
Organ Transplantation 2025;16(1):106-113
Objective To explore the relationship between PANoptosis and hepatic ischemia-reperfusion injury (HIRI), and to screen the key genes of PANoptosis in HIRI. Methods PANoptosis-related differentially expressed genes (PDG) were obtained through the Gene Expression Omnibus database and GeneCards database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore the biological pathways related to PDG. A protein-protein interaction network was constructed. Key genes were selected, and their diagnostic value was assessed and validated in the HIRI mice. Immune cell infiltration analysis was performed based on the cell-type identification by estimating relative subsets of RNA transcripts. Results A total of 16 PDG were identified. GO analysis showed that PDG were closely related to cellular metabolism. KEGG analysis indicated that PDG were mainly enriched in cellular death pathways such as apoptosis and immune-related signaling pathways such as the tumor necrosis factor signaling pathway. GSEA results showed that key genes were mainly enriched in immune-related signaling pathways such as the mitogen-activated protein kinase (MAPK) signaling pathway. Two key genes, DFFB and TNFSF10, were identified with high accuracy in diagnosing HIRI, with areas under the curve of 0.964 and 1.000, respectively. Immune infiltration analysis showed that the control group had more infiltration of resting natural killer cells, M2 macrophages, etc., while the HIRI group had more infiltration of M0 macrophages, neutrophils, and naive B cells. Real-time quantitative polymerase chain reaction results showed that compared with the Sham group, the relative expression of DFFB messenger RNA in liver tissue of HIRI group mice increased, and the relative expression of TNFSF10 messenger RNA decreased. Cibersort analysis showed that the infiltration abundance of naive B cells was positively correlated with DFFB expression (r=0.70, P=0.035), and the infiltration abundance of M2 macrophages was positively correlated with TNFSF10 expression (r=0.68, P=0.045). Conclusions PANoptosis-related genes DFFB and TNFSF10 may be potential biomarkers and therapeutic targets for HIRI.
2.Annual review of basic research on lung transplantation of China in 2024
Jier MA ; Junmin ZHU ; Lan ZHANG ; Xiaohan JIN ; Xiangyun ZHENG ; Senlin HOU ; Zengwei YU ; Yaling LIU ; Haoji YAN ; Dong TIAN
Organ Transplantation 2025;16(3):386-393
Lung transplantation is the optimal treatment for end-stage lung diseases and can significantly improve prognosis of the patients. However, postoperative complications such as infection, rejection, ischemia-reperfusion injury, and other challenges (like shortage of donor lungs) , limit the practical application of lung transplantation in clinical practice. Chinese research teams have been making continuous efforts and have achieved breakthroughs in basic research on lung transplantation by integrating emerging technologies and cutting-edge achievements from interdisciplinary fields, which has strongly propelled the development of this field. This article will comprehensively review the academic progress made by Chinese research teams in the field of lung transplantation in 2024, with a focus on the achievements of Chinese teams in basic research on lung transplantation. It aims to provide innovative ideas and strategies for key issues in the basic field of lung transplantation and to help China's lung transplantation cause reach a higher level.
3.Effects of Conbercept on different optical coherence tomography biomarkers in patients with retinal vein occlusion-related macular edema
Haiyue YU ; Juan TENG ; Zeying DONG ; Lili ZHANG ; Huixian CUI ; Chang LIU ; Guang ZHU ; Xin LI
International Eye Science 2025;25(10):1656-1661
AIM: To investigate the effects of Conbercept on various optical coherence tomography(OCT)biomarkers in patients with retinal vein occlusion-related macular edema(RVO-ME), and to analyze the correlation of these biomarker changes with visual prognosis.METHODS: Retrospective study. A total of 57 patients(57 eyes)with RVO-ME, including 25 patients(25 eyes)with central retinal vein occlusion(CRVO)and 32 patients(32 eyes)with branch retinal vein occlusion(BRVO), were enrolled in this study. All the patients received intravitreal injection of conbercept once a month, three times in total. The preoperative and postoperative best-corrected visual acuity(BCVA), and changes in OCT biomarkers, including central macular thickness(CMT), the length of disorganization of the retinal inner layers(DRIL), the number of hyperreflective dots(HRD), the area of intraretinal fluid(IRF), the area of subretinal fluid(SRF), and the length of ellipsoid zone(EZ)disruption were compared. Furthermore, the relationship of these changes with BCVA was analyzed.RESULTS:Compared with the baseline, at 3 mo post-treatment, BCVA(LogMAR)was improved, CMT was decreased, the length of DRIL was shortened, the number of HRD was reduced, the area of IRF was decreased, the area of SRF was reduced, and the length of EZ disruption was shortened(all P<0.05). Spearman correlation analysis showed that there was no correlation between the changes in CMT, the length of DRIL, the number of HRD, the area of IRF, the area of SRF and the change in BCVA before and after treatment(P>0.05). However, the change in the length of EZ disruption was positively correlated with the change in BCVA(rs=0.34, P=0.011), and the R2 value of the fitting curve between the change in the length of EZ disruption and the change in BCVA was 0.113(P=0.011). When comparing the pre- and post-treatment changes in BCVA, the length of DRIL, the number of HRD, the area of IRF, the area of SRF, and the length of EZ disruption between patients in the CRVO group and BRVO group, no significant differences were observed(all P>0.05). In contrast, a significant difference was found in the change in CMT between the two groups(P=0.002).CONCLUSION:Conbercept effectively improves multiple OCT biomarkers in patients with RVO-ME. Repair of EZ disruption is a key driver of visual recovery, and its stability may serve as a novel indicator for personalized decision-making in anti-vascular endothelial growth factor therapy.
4.Association of NLRP3 genetic variant rs10754555 with early-onset coronary artery disease.
Lingfeng ZHA ; Chengqi XU ; Mengqi WANG ; Shaofang NIE ; Miao YU ; Jiangtao DONG ; Qianwen CHEN ; Tian XIE ; Meilin LIU ; Fen YANG ; Zhengfeng ZHU ; Xin TU ; Qing K WANG ; Zhilei SHAN ; Xiang CHENG
Chinese Medical Journal 2025;138(21):2844-2846
5.Polysaccharide extract PCP1 from Polygonatum cyrtonema ameliorates cerebral ischemia-reperfusion injury in rats by inhibiting TLR4/NLRP3 pathway.
Xin ZHAN ; Zi-Xu LI ; Zhu YANG ; Jie YU ; Wen CAO ; Zhen-Dong WU ; Jiang-Ping WU ; Qiu-Yue LYU ; Hui CHE ; Guo-Dong WANG ; Jun HAN
China Journal of Chinese Materia Medica 2025;50(9):2450-2460
This study aims to investigate the protective effects and mechanisms of polysaccharide extract PCP1 from Polygonatum cyrtonema in ameliorating cerebral ischemia-reperfusion(I/R) injury in rats through modulation of the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. In vivo, SD rats were randomly divided into the sham group, model group, PCP1 group, nimodipine(NMDP) group, and TLR4 signaling inhibitor(TAK-242) group. A middle cerebral artery occlusion/reperfusion(MCAO/R) model was established, and neurological deficit scores and infarct size were evaluated 24 hours after reperfusion. Hematoxylin-eosin(HE) and Nissl staining were used to observe pathological changes in ischemic brain tissue. Transmission electron microscopy(TEM) assessed ultrastructural damage in cortical neurons. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and nitric oxide(NO) in serum. Immunofluorescence was used to analyze the expression of TLR4 and NLRP3 proteins. In vitro, a BV2 microglial cell oxygen-glucose deprivation/reperfusion(OGD/R) model was established, and cells were divided into the control, OGD/R, PCP1, TAK-242, and PCP1 + TLR4 activator lipopolysaccharide(LPS) groups. The CCK-8 assay evaluated BV2 cell viability, and ELISA determined NO release. Western blot was used to analyze the expression of TLR4, NLRP3, and downstream pathway-related proteins. The results indicated that, compared with the model group, PCP1 significantly reduced neurological deficit scores, infarct size, ischemic tissue pathology, cortical cell damage, and the levels of inflammatory factors IL-1β, IL-6, IL-18, TNF-α, and NO(P<0.01). It also elevated IL-10 levels(P<0.01) and decreased the expression of TLR4 and NLRP3 proteins(P<0.05, P<0.01). Moreover, in vitro results showed that, compared with the OGD/R group, PCP1 significantly improved BV2 cell viability(P<0.05, P<0.01), reduced cell NO levels induced by OGD/R(P<0.01), and inhibited the expression of TLR4-related inflammatory pathway proteins, including TLR4, myeloid differentiation factor 88(MyD88), tumor necrosis factor receptor-associated factor 6(TRAF6), phosphorylated nuclear factor-kappaB dimer RelA(p-p65)/nuclear factor-kappaB dimer RelA(p65), NLRP3, cleaved-caspase-1, apoptosis-associated speck-like protein(ASC), GSDMD-N, IL-1β, and IL-18(P<0.05, P<0.01). The protective effects of PCP1 were reversed by LPS stimulation. In conclusion, PCP1 ameliorates cerebral I/R injury by modulating the TLR4/NLRP3 signaling pathway, exerting anti-inflammatory and anti-pyroptotic effects.
Animals
;
Toll-Like Receptor 4/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Reperfusion Injury/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Polysaccharides/isolation & purification*
;
Polygonatum/chemistry*
;
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Humans
6.Mechanism of Quanduzhong Capsules in treating knee osteoarthritis from perspective of spatial heterogeneity.
Zhao-Chen MA ; Zi-Qing XIAO ; Chu ZHANG ; Yu-Dong LIU ; Ming-Zhu XU ; Xiao-Feng LI ; Zhi-Ping WU ; Wei-Jie LI ; Yi-Xin YANG ; Na LIN ; Yan-Qiong ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2209-2216
This study aims to systematically characterize the targeted effects of Quanduzhong Capsules on cartilage lesions in knee osteoarthritis by integrating spatial transcriptomics data mining and animal experiments validation, thereby elucidating the related molecular mechanisms. A knee osteoarthritis model was established using Sprague-Dawley(SD) rats, via a modified Hulth method. Hematoxylin and eosin(HE) staining was employed to detect knee osteoarthritis-associated pathological changes in knee cartilage. Candidate targets of Quanduzhong Capsules were collected from the HIT 2.0 database, followed by bioinformatics analysis of spatial transcriptomics datasets(GSE254844) from cartilage tissues in clinical knee osteoarthritis patients to identify spatially specific disease genes. Furthermore, a "formula candidate targets-spatially specific genes in cartilage lesions" interaction network was constructed to explore the effects and major mechanisms of Quanduzhong Capsules in distinct cartilage regions. Experimental validation was conducted through immunohistochemistry using animal-derived biospecimens. The results indicated that Quanduzhong Capsules effectively inhibited the degenerative changes in the cartilage of affected joints in rats, which was associated with the regulation of Quanduzhong Capsules on the thioredoxin-interacting protein(TXNIP)-NOD-like receptor family pyrin domain containing 3(NLRP3)-bone morphogenetic protein receptor type 2(BMPR2)-fibronectin 1(FN1)-matrix metallopeptidase 2(MMP2) signal axis in the articular cartilage surface and superficial zones, subsequently inhibiting cartilage matrix degradation leading to oxidative stress and inflammatory diffusion. In summary, this study clarifies the spatially specific targeted effects and protective mechanisms of Quanduzhong Capsules within pathological cartilage regions in knee osteoarthritis, providing theoretical and experimental support for the clinical application of this drug in the targeted therapy on the inflamed cartilage.
Animals
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Rats
;
Male
;
Humans
;
Capsules
;
Female
;
Disease Models, Animal
7.Two new sesquiterpenoids from Wenyujin Rhizoma Concisum.
Yu LI ; Min CHEN ; Cheng ZHU ; Ci-Mei WU ; Chao-Jie WANG ; Jian-Yong DONG
China Journal of Chinese Materia Medica 2025;50(10):2704-2710
This study explored the active ingredients for anti-angiogenesis in Wenyujin Rhizoma Concisum. Ten sesquiterpenoids were isolated from Wenyujin Rhizoma Concisum by silica gel column chromatography, thin layer chromatography, and high performance liquid chromatography. According to the results of multiple spectroscopic methods and circular dichroism, they were identified as wenyujinlactam A(1),(4S,7S)11-hydroxycurdione(2), 8,9-seco-4β-hydroxy-1α,5βH-7(11)-guaen-8,10-olide(3), curcumadione(4), phaeocaulisin E(5), procurcumadiol(6), zedouronediol(7), epiprocurcumenol(8), gajutsulactone A(9), and(7Z)-1β,4α-dihydroxy-5α,8β(H)-eudesm-7(11)-en-8,12-olide(10). Compounds 1 and 2 were new sesquiterpenoids. Compounds 1, 6, 8, and 10 can inhibit human umbilical vein endothelial cells(HUVEC) proliferation with IC_(50) values of 38.83, 45.19, 32.12, and 37.80 μmol·L~(-1), respectively. Compounds 1 and 10 can inhibit HUVEC migration with IC_(50) values of 29.70 and 36.48 μmol·L~(-1), respectively.
Sesquiterpenes/isolation & purification*
;
Humans
;
Drugs, Chinese Herbal/isolation & purification*
;
Rhizome/chemistry*
;
Human Umbilical Vein Endothelial Cells/drug effects*
;
Molecular Structure
;
Cell Proliferation/drug effects*
8.Mechanism of isorhamnetin in alleviating acute lung injury by regulating pyroptosis medicated by NLRP3/ASC/caspase-1 axis.
Ya-Lei SUN ; Yu GUO ; Xin-Yu WANG ; Ya-Su ZHANG ; Xue CHENG ; Ke ZHU ; Li-Dian CHEN ; Xiao-Dong FENG
China Journal of Chinese Materia Medica 2025;50(15):4120-4128
This study aims to explore the intervention effects of isorhamnetin(Isor) on acute lung injury(ALI) and its regulatory effects on pyroptosis mediated by the NOD-like receptor family pyrin domain containing 3(NLRP3)/apoptosis-associated speck-like protein containing a CARD(ASC)/cysteine aspartate-specific protease-1(caspase-1) axis. In the in vivo experiments, 60 BALB/c mice were divided into five groups. Except for the control group, the other groups were administered Isor by gavage 1 hour before intratracheal instillation of LPS to induce ALI, and tissues were collected after 12 hours. In the in vitro experiments, RAW264.7 cells were divided into five groups. Except for the control group, the other groups were pretreated with Isor for 2 hours before LPS stimulation and subsequent assessments. Hematoxylin-eosin(HE) staining was used to observe pathological changes in lung tissue, while lung swelling, protein levels in bronchoalveolar lavage fluid(BALF), and myeloperoxidase(MPO) levels in lung tissue were measured. Cell proliferation toxicity and viability were assessed using the cell counting kit-8(CCK-8) method. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin-1β(IL-1β), IL-6, IL-18, and tumor necrosis factor-α(TNF-α). Protein levels of NLRP3, ASC, cleaved caspase-1, and the N-terminal fragment of gasdermin D(GSDMD-N) were evaluated using immunohistochemistry, immunofluorescence, and Western blot. The results showed that in the in vivo experiments, Isor significantly improved pathological damage in lung tissue, reduced lung swelling, protein levels in BALF, MPO levels in lung tissue, and levels of inflammatory cytokines such as IL-1β, IL-6, IL-18, and TNF-α, and inhibited the high expression of the NLRP3/ASC/caspase-1 axis and the pyroptosis core gene GSDMD-N. In the in vitro experiments, the safe dose of Isor was determined through cell proliferation toxicity assays. Isor reduced cell death and inhibited the expression levels of the NLRP3/ASC/caspase-1 axis, GSDMD-N, and inflammatory cytokines. In conclusion, Isor may alleviate ALI by modulating pyroptosis mediated by the NLRP3/ASC/caspase-1 axis.
Animals
;
Pyroptosis/drug effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Acute Lung Injury/physiopathology*
;
Mice
;
Mice, Inbred BALB C
;
Quercetin/pharmacology*
;
Caspase 1/genetics*
;
CARD Signaling Adaptor Proteins/genetics*
;
Male
;
RAW 264.7 Cells
;
Humans
;
Lung/metabolism*
9.Protocol for development of Guideline for Interventions on Cervical Spine Health.
Jing LI ; Guang-Qi LU ; Ming-Hui ZHUANG ; Xin-Yue SUN ; Ya-Kun LIU ; Ming-Ming MA ; Li-Guo ZHU ; Zhong-Shi LI ; Wei CHEN ; Ji-Ge DONG ; Le-Wei ZHANG ; Jie YU
China Journal of Orthopaedics and Traumatology 2025;38(10):1083-1088
Cervical spine health issues not only seriously affect patients' quality of life but also impose a heavy burden on the social healthcare system. Existing guidelines lack sufficient clinical guidance on lifestyle and work habits, such as exercise, posture, daily routine, and diet, making it difficult to meet practical needs. To address this, relying on the China Association of Chinese Medicine, Wangjing Hospital of China Academy of Chinese Medical Sciences took the lead and joined hands with more than ten institutions to form a multidisciplinary guideline development group. For the first time, the group developed the Guidelines for Cervical Spine Health Intervention based on evidence-based medicine methods, strictly following the standardized procedures outlined in the World Health Organization Handbook for Guideline Development and the Guiding Principles for the Formulation/Revision of Clinical Practice Guidelines in China (2022 Edition). This proposal systematically explains the methods and steps for developing the guideline, aiming to make the guideline development process scientific, standardized, and transparent.
Humans
;
Practice Guidelines as Topic/standards*
;
Cervical Vertebrae
;
China
10.Novel biallelic HFM1 variants cause severe oligozoospermia with favorable intracytoplasmic sperm injection outcome.
Liu LIU ; Yi-Ling ZHOU ; Wei-Dong TIAN ; Feng JIANG ; Jia-Xiong WANG ; Feng ZHANG ; Chun-Yu LIU ; Hong ZHU
Asian Journal of Andrology 2025;27(6):751-756
Male factors contribute to 50% of infertility cases, with 20%-30% of cases being solely attributed to male infertility. Helicase for meiosis 1 ( HFM1 ) plays a crucial role in ensuring proper crossover formation and synapsis of homologous chromosomes during meiosis, an essential process in gametogenesis. HFM1 gene mutations are associated with male infertility, particularly in cases of non-obstructive azoospermia and severe oligozoospermia. However, the effects of intracytoplasmic sperm injection (ICSI) in HFM1 -related infertility cases remain inadequately explored. This study identified novel biallelic HFM1 variants through whole-exome sequencing (WES) in a Chinese patient with severe oligozoospermia, which was confirmed by Sanger sequencing. The pathogenicity of these variants was assessed using real-time quantitative polymerase chain reaction (RT-qPCR) and immunoblotting, which revealed a significant reduction in HFM1 mRNA and protein levels in spermatozoa compared to those in a healthy control. Transmission electron microscopy revealed morphological abnormalities in sperm cells, including defects in the head and flagellum. Despite these abnormalities, ICSI treatment resulted in a favorable fertility outcome for the patient, indicating that assisted reproductive techniques (ART) can be effective in managing HFM1 -related male infertility. These findings offer valuable insights into the management of such cases.
Humans
;
Male
;
Sperm Injections, Intracytoplasmic
;
Oligospermia/therapy*
;
Adult
;
Spermatozoa/ultrastructure*
;
Exome Sequencing
;
Mutation

Result Analysis
Print
Save
E-mail