1.Relationship of physical activity and screen time with overweight and obesity among children and adolescents with special needs in Tianjin
HAN Yu, LI Zhi, LI Penghong, CUI Tingkai, XIONG Wenjuan, QU Zhiyi, XI Wei, ZHANG Xin
Chinese Journal of School Health 2025;46(2):162-166
Objective:
To investigate the association of physical activity and screen time with overweight and obesity among children and adolescents with special needs in Tianjin, so as to provide scientific evidence for childhood obesity prevention and intervention measures in the population.
Methods:
From January 2022 to June 2024, 296 children and adolescents with intellectual disabilities and autism spectrum disorders aged 2-18 years were recruited from special education schools and institutions in Tianjin. Height and weight were measured, and a standardized questionnaire was used to assess physical activity and screen time. Binary Logistic regression analysis was carried out to investigate the association of physical activity and screen time with overweight and obesity.
Results:
The prevalence of overweight and obesity among children and adolescents with special needs in Tianjin were 17.2% and 21.6%, respectively, and the combined prevalence of overweight and obesity was 38.9%. The median of moderatetovigorous physical activity (MVPA) time was 0.20 h/d, and physical activity sufficiency rate was 7.8%. The median of screen time was 1.79 h/d, and the screen time compliance rate was 68.2%. The binary Logistic regression results showed that lower levels of MVPA time and increased screen time were associated with a higher risk of overweight and obesity among children and adolescents with special needs [OR(95%CI)=1.80(1.06-3.07), 2.40(1.42-4.07),P<0.05].
Conclusions
Insufficient physical activity and excessive screen time are associated with an increased risk of overweight and obesity among children and adolescents with special needs. Therefore, comprehensive intervention measures should be implemented as early as possible to prevent and reduce the incidence of overweight and obesity in this population.
2.Prevalence and related factors of screening myopia among students in special education schools in Tianjin
XI Wei, HAN Hui, XIONG Wenjuan, HAN Yu, WANG Hui, ZHANG Xin
Chinese Journal of School Health 2025;46(3):443-446
Objective:
To understand the current situation and related factors of screening myopia among students in special education schools, so as to provide evidence for promoting the health level of this population.
Methods:
From November 2021 to December 2023, a total of 281 students from 6 special education schools in 5 districts of Tianjin were selected by cluster random sampling method for computer optometry visual acuity examination for non ciliary paralysis and questionnaire survey. Multiple Logistic regression was performed to analyze the influencing factors of screening myopia among special education students.
Results:
The screening myopia detection rate among these special education students in Tianjin was 27.0%, and the screening myopia detection rates of students with autism, developmental delays, and intellectual disabilities were 22.4%, 12.5%, and 33.0%, respectively. The degree of myopia increased with age ( χ 2 trend =22.65, P <0.01). Multivariate Logistic regression analysis showed that age(10-13 years old: OR =5.40, 14-17 years old: OR =8.40, 18-23 years old: OR =6.02), accommodation(non resident: OR =0.29), daily mobile phone usage ≥2 hours ( OR =2.37), and daily computer/tablet usage ≥2 hours ( OR =2.70) were the risk factors for screening myopia among special education students ( P <0.05).
Conclusions
The detection rate and degree of screening myopia increase with age in special education students. Prolonged screen time exposure is a primary risk factor for screening myopia in special education students. Effective myopia prevention and control strategies should be designed according to the characteristics of special education students.
3.Small Intestine Lipid Absorption and Health: The Improvement Effect of Exercise Under The Challenge of High-fat Diet
Wei-Huan WANG ; Yu-Xi DAI ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(6):1560-1573
The two core causes of obesity in modern lifestyle are high-fat diet (HFD) and insufficient physical activity. HFD can lead to disruption of gut microbiota and abnormal lipid metabolism, further exacerbating the process of obesity. The small intestine, as the “first checkpoint” for the digestion and absorption of dietary lipids into the body, plays a pivotal role in lipid metabolism. The small intestine is involved in the digestion, absorption, transport, and synthesis of dietary lipids. The absorption of lipids in the small intestine is a crucial step, as overactive absorption leads to a large amount of lipids entering the bloodstream, which affects the occurrence of obesity. HFD can lead to insulin resistance, disruption of gut microbiota, and inflammatory response in the body, which can further induce lipid absorption and metabolism disorders in the small intestine, thereby promoting the occurrence of chronic metabolic diseases such as obesity. Long term HFD can accelerate pathological structural remodeling and lipid absorption dysfunction of the small intestine: after high-fat diet, the small intestine becomes longer and heavier, with excessive villi elongation and microvilli elongation, thereby increasing the surface area of lipid absorption and causing lipid overload in the small intestine. In addition, overexpression of small intestine uptake transporters, intestinal mucosal damage induced “intestinal leakage”, dysbiosis of intestinal microbiota, ultimately leading to abnormal lipid absorption and chronic inflammation, accelerating lipid accumulation and obesity. Exercise, as one of the important means of simple, economical, and effective proactive health interventions, has always been highly regarded for its role in improving lipid metabolism homeostasis. The effect of exercise on small intestine lipid absorption shows a dose-dependent effect. Moderate to low-intensity aerobic exercise can improve the intestinal microenvironment, regulate the structure and lipid absorption function of the small intestine, promote lipid metabolism and health, while vigorous exercise, excessive exercise, and long-term high-intensity training can cause intestinal discomfort, leading to the destruction of intestinal structure and related symptoms, affecting lipid absorption. Long term regular exercise can regulate the diversity of intestinal microbiota, inhibit inflammatory signal transduction such as NF-κB, enhance intestinal mucosal barrier function, and improve intestinal lipid metabolism disorders, further enhancing the process of small intestinal lipid absorption. Exercise also participates in the remodeling process of small intestinal epithelial cells, regulating epithelial structural homeostasis by activating cell proliferation related pathways such as Wnt/β-catenin. Exercise can regulate the expression of lipid transport proteins CD36, FATP, and NPC1L1, and regulate the function of small intestine lipid absorption. However, the research on the effects of long-term exercise on small intestine structure, villus structure, absorption surface area, and lipid absorption related proteins is not systematic enough, the results are inconsistent, and the relevant mechanisms are not clear. In the future, experimental research can be conducted on the dose-response relationship of different intensities and forms of exercise, exploring the mechanisms of exercise improving small intestine lipid absorption and providing theoretical reference for scientific weight loss. It should be noted that the intestine is an organ that is sensitive to exercise response. How to determine the appropriate range, threshold, and form of exercise intensity to ensure beneficial regulation of intestinal lipid metabolism induced by exercise should become an important research direction in the future.
4.Exercise Improves Metaflammation: The Potential Regulatory Role of BDNF
Yu-Xi DAI ; Wei-Huan WANG ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(9):2314-2331
Metaflammation is a crucial mechanism in the onset and advancement of metabolic disorders, primarily defined by the activation of immune cells and increased concentrations of pro-inflammatory substances. The function of brain-derived neurotrophic factor (BDNF) in modulating immune and metabolic processes has garnered heightened interest, as BDNF suppresses glial cell activation and orchestrates inflammatory responses in the central nervous system via its receptor tyrosine kinase receptor B (TrkB), while also diminishing local inflammation in peripheral tissues by influencing macrophage polarization. Exercise, as a non-pharmacological intervention, is extensively employed to enhance metabolic disorders. A crucial mechanism underlying its efficacy is the significant induction of BDNF expression in central (hypothalamus, hippocampus, prefrontal cortex, and brainstem) and peripheral (liver, adipose tissue, intestines, and skeletal muscle) tissues and organs. This induction subsequently regulates inflammatory responses, ameliorates metabolic conditions, and decelerates disease progression. Consequently, BDNF is considered a pivotal molecule in the motor-metabolic regulation axis. Despite prior suggestions that BDNF may have a role in the regulation of exercise-induced inflammation, systematic data remains inadequate. Since that time, the field continues to lack structured descriptions and conversations pertinent to it. As exercise physiology research has advanced, the academic community has increasingly recognized that exercise is a multifaceted activity regulated by various systems, with its effects contingent upon the interplay of elements such as type, intensity, and frequency of exercise. Consequently, it is imperative to transcend the prior study paradigm that concentrated solely on localized effects and singular mechanisms and transition towards a comprehensive understanding of the systemic advantages of exercise. A multitude of investigations has validated that exercise confers health advantages for individuals with metabolic disorders, encompassing youngsters, adolescents, middle-aged individuals, and older persons, and typically enhances health via BDNF secretion. However, exercise is a double-edged sword; the relationship between exercise and health is not linearly positive. Insufficient exercise is ineffective, while excessive exercise can be detrimental to health. Consequently, it is crucial to scientifically develop exercise prescriptions, define appropriate exercise loads, and optimize health benefits to regulate bodily metabolism. BDNF mitigates metaflammation via many pathways during exercise. Initially, BDNF suppresses pro-inflammatory factors and facilitates the production of anti-inflammatory factors by modulating bidirectional transmission between neural and immune cells, therefore diminishing the inflammatory response. Secondly, exercise stimulates the PI3K/Akt, AMPK, and other signaling pathways via BDNF, enhancing insulin sensitivity, reducing lipotoxicity, and fostering mitochondrial production, so further optimizing the body’s metabolic condition. Moreover, exercise-induced BDNF contributes to the attenuation of systemic inflammation by collaborating with several organs, enhancing hepatic antioxidant capacity, regulating immunological response, and optimizing “gut-brain” axis functionality. These processes underscore the efficacy of exercise as a non-pharmacological intervention for enhancing anti-inflammatory and metabolic health. Despite substantial experimental evidence demonstrating the efficacy of exercise in mitigating inflammation and enhancing BDNF levels, numerous limitations persist in the existing studies. Primarily, the majority of studies have concentrated on molecular biology and lack causal experimental evidence that explicitly confirms BDNF as a crucial mediator in the exercise regulation of metaflammation. Furthermore, the outcomes of current molecular investigations are inadequately applicable to clinical practice, and a definitive pathway of “exercise-BDNF-metaflammation” remains unestablished. Moreover, the existing research methodology, reliant on animal models or limited human subject samples, constrains the broad dissemination of the findings. Future research should progressively transition from investigating isolated and localized pathways to a comprehensive multilevel and multidimensional framework that incorporates systems biology and exercise physiology. Practically, there is an immediate necessity to undertake extensive, double-blind, randomized controlled longitudinal human studies utilizing multi-omics technologies (e.g., transcriptomics, proteomics, and metabolomics) to investigate the principal signaling pathways of BDNF-mediated metaflammation and to elucidate the causal relationships and molecular mechanisms involved. Establishing a more comprehensive scientific evidence system aims to furnish a robust theoretical framework and practical guidance for the mechanistic interpretation, clinical application, and pharmaceutical development of exercise in the prevention and treatment of metabolic diseases.
5.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*
6.Safety and effectiveness of lecanemab in Chinese patients with early Alzheimer's disease: Evidence from a multidimensional real-world study.
Wenyan KANG ; Chao GAO ; Xiaoyan LI ; Xiaoxue WANG ; Huizhu ZHONG ; Qiao WEI ; Yonghua TANG ; Peijian HUANG ; Ruinan SHEN ; Lingyun CHEN ; Jing ZHANG ; Rong FANG ; Wei WEI ; Fengjuan ZHANG ; Gaiyan ZHOU ; Weihong YUAN ; Xi CHEN ; Zhao YANG ; Ying WU ; Wenli XU ; Shuo ZHU ; Liwen ZHANG ; Naying HE ; Weihuan FANG ; Miao ZHANG ; Yu ZHANG ; Huijun JU ; Yaya BAI ; Jun LIU
Chinese Medical Journal 2025;138(22):2907-2916
INTRODUCTION:
Lecanemab has shown promise in treating early Alzheimer's disease (AD), but its safety and efficacy in Chinese populations remain unexplored. This study aimed to evaluate the safety and 6-month clinical outcomes of lecanemab in Chinese patients with mild cognitive impairment (MCI) or mild AD.
METHODS:
In this single-arm, real-world study, participants with MCI due to AD or mild AD received biweekly intravenous lecanemab (10 mg/kg). The study was conducted at Hainan Branch, Ruijin Hospital Shanghai Jiao Tong University School of Medicine. Patient enrollment and baseline assessments commenced in November 2023. Safety assessments included monitoring for amyloid-related imaging abnormalities (ARIA) and other adverse events. Clinical and biomarker changes from baseline to 6 months were evaluated using cognitive scales (mini-mental state examination [MMSE], montreal cognitive assessment [MoCA], clinical dementia rating-sum of boxes [CDR-SB]), plasma biomarker analysis, and advanced neuroimaging.
RESULTS:
A total of 64 patients were enrolled in this ongoing real-world study. Safety analysis revealed predominantly mild adverse events, with infusion-related reactions (20.3%, 13/64) being the most common. Of these, 69.2% (9/13) occurred during the initial infusion and 84.6% (11/13) did not recur. ARIA-H (microhemorrhages/superficial siderosis) and ARIA-E (edema/effusion) were observed in 9.4% (6/64) and 3.1% (2/64) of participants, respectively, with only two symptomatic cases (one ARIA-E presenting with headache and one ARIA-H with visual disturbances). After 6 months of treatment, cognitive scores remained stable compared to baseline (MMSE: 22.33 ± 5.58 vs . 21.27 ± 4.30, P = 0.733; MoCA: 16.38 ± 6.67 vs . 15.90 ± 4.78, P = 0.785; CDR-SB: 2.30 ± 1.65 vs . 3.16 ± 1.72, P = 0.357), while significantly increasing plasma amyloid-β 42 (Aβ42) (+21.42%) and Aβ40 (+23.53%) levels compared to baseline.
CONCLUSIONS:
Lecanemab demonstrated a favorable safety profile in Chinese patients with early AD. Cognitive stability and biomarker changes over 6 months suggest potential efficacy, though high dropout rates and absence of a control group warrant cautious interpretation. These findings provide preliminary real-world evidence for lecanemab's use in China, supporting further investigation in larger controlled studies.
REGISTRATION
ClinicalTrials.gov , NCT07034222.
Humans
;
Alzheimer Disease/drug therapy*
;
Male
;
Female
;
Aged
;
Middle Aged
;
Cognitive Dysfunction/drug therapy*
;
Aged, 80 and over
;
Amyloid beta-Peptides/metabolism*
;
Biomarkers
;
East Asian People
7.Medication rules of Astragali Radix in ancient Chinese medical books based on "disease-medicine-dose" pattern.
Jia-Lei CAO ; Lü-Yuan LIANG ; Yi-Hang LIU ; Zi-Ming XU ; Xuan WANG ; Wen-Xi WEI ; He-Jia WAN ; Xing-Hang LYU ; Wei-Xiao LI ; Yu-Xin ZHANG ; Bing-Qi WEI ; Xian-Qing REN
China Journal of Chinese Materia Medica 2025;50(3):798-811
This study employed the "disease-medicine-dose" pattern to mine the medication rules of traditional Chinese medicine(TCM) prescriptions containing Astragali Radix in ancient Chinese medical books, aiming to provide a scientific basis for the clinical application of Astragali Radix and the development of new medicines. The TCM prescriptions containing Astragali Radix were retrieved from databases such as Chinese Medical Dictionary and imported into Excel 2020 to construct the prescription library. Statical analysis were performed for the prescriptions regarding the indications, syndromes, medicine use frequency, herb effects, nature and taste, meridian tropism, dosage forms, and dose. SPSS statistics 26.0 and IBM SPSS Modeler 18.0 were used for association rules analysis and cluster analysis. A total of 2 297 prescriptions containing Astragali Radix were collected, involving 233 indications, among which sore and ulcer, consumptive disease, sweating disorder, and apoplexy had high frequency(>25), and their syndromes were mainly Qi and blood deficiency, Qi and blood deficiency, Yin and Yang deficiency, and Qi deficiency and collateral obstruction, respectively. In the prescriptions, 98 medicines were used with the frequency >25 and they mainly included Qi-tonifying medicines and blood-tonifying medicines. Glycyrrhizae Radix et Rhizoma, Angelicae Sinensis Radix, Ginseng Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, and Citri Reticulatae Pericarpium were frequently used. The medicines with high frequency mainly have warm or cold nature, and sweet, pungent, or bitter taste, with tropism to spleen, lung, heart, liver, and kidney meridians. In the treatment of sore and ulcer, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to promote granulation and heal up sores. In the treatment of consumptive disease, Astragali Radix was mainly used with the dose of 37.30 g and combined with Ginseng Radix et Rhizoma to tonify deficiency and replenish Qi. In the treatment of sweating disorder, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to consolidate exterior and stop sweating. In the treatment of apoplexy, Astragali Radix was mainly used with the dose of 7.46 g and combined with Glycyrrhizae Radix et Rhizoma to dispell wind and stop convulsions. Astragali Radix can be used in the treatment of multiple system diseases, with the effects of tonifying Qi and ascending Yang, consolidating exterior and stopping sweating, and expressing toxin and promoting granulation. According to the manifestations of different diseases, when combined with other medicines, Astragali Radix was endowed with the effects of promoting granulation and healing up sores, tonifying deficiency and Qi, consolidating exterior and stopping sweating, and dispelling wind and replenishing Qi. The findings provide a theoretical reference and a scientific basis for the clinical application of Astragali Radix and the development of new medicines.
Drugs, Chinese Herbal/history*
;
Humans
;
Medicine, Chinese Traditional/history*
;
History, Ancient
;
Astragalus Plant/chemistry*
;
China
;
Astragalus propinquus
8.Synthesis of active substance 3,4-dihydroxyacetophenone from traditional Chinese medicine using Escherichia coli whole-cell bioconversion of 1-(4-hydroxyphenol)-ethanol.
Xi-Wei YUAN ; Yan-Qiu TIAN ; Wen-Yu WANG ; Ya-Lun ZHANG ; De-Hong XU
China Journal of Chinese Materia Medica 2025;50(5):1187-1194
The main active compound, 3,4-dihydroxyacetophenone(3,4-DHAP), in the leaves of Ilex pubescens var. glaber, exhibits various pharmacological activities, including vasodilation and heart protection. Currently, natural extraction and chemical synthesis are the primary methods for obtaining 3,4-DHAP, but both approaches have inherent challenges. To address these problems, this study explored the whole-cell bioconversion of 1-(4-hydroxyphenol)-ethanol to 3,4-DHAP using recombinant Escherichia coli, cultivated in a green, cost-effective medium at room temperature and atmospheric pressure. Firstly, this study successfully constructed recombinant E. coli S1, which contained only the HpaBC gene, and recombinant E. coli S3, which contained both the Hped and HpaBC genes. The ability of S1 and S3 to synthesize 3,4-DHAP from their respective substrates was then evaluated through whole-cell bioconversion. Based on these results, the effects of four factors, i.e., substrate concentration, IPTG concentration, induction temperature, and transformation temperature, on the whole-cell bioconversion yield of S3 were investigated using an orthogonal experiment. The results showed that the factors influenced the yield in the following order: transformation temperature > induction temperature > IPTG concentration > substrate concentration. The optimal conditions were found to be a transformation temperature of 35 ℃, IPTG concentration of 0.1 mmol·L~(-1), induction temperature of 25 ℃, and substrate concentration of 10 mmol·L~(-1). Finally, the effect of transformation time on the yield of 3,4-DHAP was further examined under the optimal conditions. The results indicated that as the transformation time increased, the yield of 3,4-DHAP steadily increased. The highest yield of 260 mg·L~(-1) with a productivity of 17% was achieved after 72 hours of transformation. In conclusion, this study successfully achieved the whole-cell bioconversion of 1-(4-hydroxyphenol)-ethanol to 3,4-DHAP using recombinant E. coli for the first time, laying the groundwork for further optimization and development of the biosynthesis of 3,4-DHAP.
Escherichia coli/genetics*
;
Acetophenones/chemistry*
;
Ethanol/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Biotransformation
9.Research progress in machine learning in processing and quality evaluation of traditional Chinese medicine decoction pieces.
Han-Wen ZHANG ; Yue-E LI ; Jia-Wei YU ; Qiang GUO ; Ming-Xuan LI ; Yu LI ; Xi MEI ; Lin LI ; Lian-Lin SU ; Chun-Qin MAO ; De JI ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(13):3605-3614
Traditional Chinese medicine(TCM) decoction pieces are a core carrier for the inheritance and innovation of TCM, and their quality and safety are critical to public health and the sustainable development of the industry. Conventional quality control models, while having established a well-developed system through long-term practice, still face challenges such as relatively long inspection cycles, insufficient objectivity in characterizing complex traits, and urgent needs for improving the efficiency of integrating multidimensional quality information when confronted with the dual demands of large-scale production and precision quality control. With the rapid development of artificial intelligence, machine learning can deeply analyze multidimensional data of the morphology, spectroscopy, and chemical fingerprints of decoction pieces by constructing high-dimensional feature space analysis models, significantly improving the standardization level and decision-making efficiency of quality evaluation. This article reviews the research progress in the application of machine learning in the processing, production, and rapid quality evaluation of TCM decoction pieces. It further analyzes current challenges in technological implementation and proposes potential solutions, offering theoretical and technical references to advance the digital and intelligent transformation of the industry.
Machine Learning
;
Drugs, Chinese Herbal/standards*
;
Quality Control
;
Medicine, Chinese Traditional/standards*
;
Humans
10.Study on the treatment of chronic nonbacterial prostatitis caused by dampness-heat stasis with Oxalis Formula combined with transacupuncture.
Qiang LOU ; Ming-Wei ZHAN ; Yu-Qi LAI ; Xu-Xin ZHAN ; You-Ping XIAO ; Xue-Jun SHANG
National Journal of Andrology 2025;31(2):165-171
OBJECTIVE:
The aim of this study is to evaluate the clinical efficacy of Oxalicao Formula combined with transacupuncture in the treatment of chronic nonbacterial prostatitis (CNP)characterized by dampness-heat stasis.
METHODS:
A total of 70 patients diagnosed with CNP and characterized by dampness-heat stasis were randomly divided into control group and treatment group, with 35 cases in each group. The patients in control group received Qianlie Beixi capsules. While the patients in treatment group were administered with oxalis decoction in conjunction with acupuncture therapy which lasted for 8 weeks. Pre- and post-treatment evaluations for NIH-Chronic Prostatitis Symptom Index (NIH-CPSI), Traditional Chinese Medicine (TCM) symptom scores, urodynamic parameters, immune cell subsets and inflammatory factors were performed.
RESULTS:
Ultimately, 65 patients completed the study with 33 in the treatment group and 32 in the control group. After 8 weeks of intervention, The patients in both of groups demonstrated significant improvements (P<0.05). Specifically, remarkable reductions in the NIH-CPSI total score including pain score, urination score, quality of life impact score, TCM symptom score and inflammatory cytokine levels were observed. Additionally, there were upward trend in maximum and average urinary flow rates as well as the CD4+/CD8+ ratio of immune cells(P<0.05). Compared to the control group, the treatment group exhibited superior outcomes in reducing the NIH-CPSI total score, pain score, urination score, quality of life impact score, TCM symptom score, and inflammatory cytokine levels, and increasing in CD4+/CD8+ ratios, maximum and average urine flow rates(P<0.05).
CONCLUSION
The combination of Oxalicao Formula and transacupuncture for treating CNP characterized by dampness-heat stasis demonstrates significant therapeutic benefits, which has considerable clinical application value.
Humans
;
Male
;
Prostatitis/therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Acupuncture Therapy
;
Medicine, Chinese Traditional
;
Chronic Disease
;
Treatment Outcome
;
Adult


Result Analysis
Print
Save
E-mail