1.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
2.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
3.Hyperoside Alleviates LPS-induced Inflammation in Zebrafish Model via TLR4/MyD88/NF-κB Pathway
Qing LAN ; Anna WANG ; Feifei ZHOU ; Keqian LIU ; Zhao LI ; Wenjing YU ; Shuyao TANG ; Ping LI ; Shaowu CHENG ; Sisi DENG ; Zhenyan SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):63-72
ObjectiveTo investigate the intervention effects and mechanisms of the flavonoid hyperoside (Hyp) on lipopolysaccharide (LPS)-induced inflammation in the zebrafish model. MethodsZebrafish larvae were either microinjected with 0.5 g·L-1 LPS or immersed in 1 g·L-1 LPS for the modeling of inflammation. The larvae were then treated with Hyp at 25, 50, and 100 mg·L-1 through immersion for four consecutive days. The inflammatory phenotypes were assessed by analyzing the mortality rate, malformation rate, body length, and yolk sac area ratio. Behavioral tests were conducted to evaluate the inflammatory stress responses, and macrophage migration was observed by fluorescence microscopy. Additionally, the mRNA levels of inflammation-related genes, including interleukin-1β (IL-1β), interleukin-6 (IL-6), chemokine C-C motif ligand 2 (CCL2), chemokine C-X3-C motif receptor 1 (CX3CR1), chemokine C-C motif receptor 2 (CCR2), and genes associated with the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-kappa B (NF-κB) signaling pathway, were measured by Real-time quantitative polymerase chain reaction(Real-time PCR). ResultsCompared with the pure water injection group, the model group exhibited increased mortality, malformation rates and yolk sac area ratio (P0.01), reduced body length (P0.01), increased total swimming distance and high-speed swimming duration (P0.01), and up-regulated mRNA levels of TLR4, MyD88, NF-κB, IL-1β, IL-6, CCL2, CX3CR1, and CCR2 (P0.01). Hyp at low, medium and high doses, as well as aspirin, reduced the mortality and malformation rates (P0.05,P0.01), increased the body length (P0.05,P0.01), decreased the yolk sac area ratio (P0.01), reduced the high-speed swimming duration (P0.01), and down-regulated the mRNA levels of TLR4, MyD88, NF-κB, IL-1β, IL-6, CCL2, CX3CR1, and CCR2 (P0.05,P0.01) compared with the model group. ConclusionHyp may modulate the TLR4/MyD88/NF-κB pathway to ameliorate inflammatory phenotypes and alleviate stress conditions in zebrafish, thereby exerting the anti-inflammatory effect.
4.POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration.
Yizhi XIAO ; Ping YANG ; Wushuang XIAO ; Zhen YU ; Jiaying LI ; Xiaofeng LI ; Jianjiao LIN ; Jieming ZHANG ; Miaomiao PEI ; Linjie HONG ; Juanying YANG ; Zhizhao LIN ; Ping JIANG ; Li XIANG ; Guoxin LI ; Xinbo AI ; Weiyu DAI ; Weimei TANG ; Jide WANG
Chinese Medical Journal 2025;138(7):838-850
BACKGROUND:
The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown.
METHODS:
Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice.
RESULTS:
POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples.
CONCLUSIONS
The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
MicroRNAs/metabolism*
;
Humans
;
Stomach Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Animals
;
Mice
;
Octamer Transcription Factor-1/metabolism*
;
Mice, Nude
;
Class Ia Phosphatidylinositol 3-Kinase/metabolism*
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic/genetics*
;
Male
;
Immunohistochemistry
;
Female
5.Effect of Biyan Jiedu Capsules on proliferation and apoptosis of nasopharyngeal carcinoma cells based on PI3K/Akt pathway.
Ting LIN ; Yang-Yang TAO ; Ying-Gang TANG ; Ju YUAN ; Hui-Ping DU ; Lin-Yu DENG ; Fang-Liang ZHOU ; Ying-Chun HE
China Journal of Chinese Materia Medica 2025;50(7):1920-1927
To investigate the effects of Biyan Jiedu Capsules on the proliferation and apoptosis of nasopharyngeal carcinoma cells and their molecular mechanism, nasopharyngeal carcinoma cells CNE1 and CNE2 were used. They were divided into control group(30% blank serum medium), low-(10% drug-containing serum + 20% blank serum medium), medium-(20% drug-containing serum + 10% blank serum medium), and high-(30% drug-containing serum medium) concentration group of Biyan Jiedu Capsules according to in vitro experiment. After 24 h of intervention, the effects of Biyan Jiedu Capsules on the proliferation of CNE1 and CNE2 were detected by CCK-8 assay, clonal formation experiment, and EdU staining. The effect of Biyan Jiedu Capsules on apoptosis of CNE1 and CNE2 was detected by flow cytometry. Western blot was used to detect the effect of Biyan Jiedu Capsules on the expression of X-linked apoptosis inhibitor protein(XIAP), survivin, proliferating cell nuclear antigen(PCNA), and PI3K/Akt pathway-related proteins in CNE1 and CNE2. The results showed that compared with the control group, the survival rate of CNE1 and CNE2 in the medium and high concentration groups of Biyan Jiedu Capsules could be decreased in a concentration-dependent way(P<0.05, P<0.01). At the same time, EdU staining and clonal formation experiments showed that the proliferation of CNE1 and CNE2 was significantly inhibited in the medium and high concentration groups of Biyan Jiedu Capsules(P<0.05, P<0.01). Flow cytometry showed that the apoptosis rate of CNE1 and CNE2 was significantly increased in all concentration groups of Biyan Jiedu Capsules(P<0.01), and the apoptosis rate was concentration-dependent. Western blot showed that the expressions of XIAP, survivin, PCNA, p-PI3K, and p-Akt in all concentration groups of Biyan Jiedu Capsules were significantly down-regulated(P<0.05, P<0.01). In conclusion, Biyan Jiedu Capsules can inhibit the proliferation and induce apoptosis of nasopharyngeal carcinoma cells possibly by down-regulating the PI3K/Akt signaling pathway.
Humans
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Nasopharyngeal Carcinoma
;
Nasopharyngeal Neoplasms/physiopathology*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Cell Line, Tumor
;
Drugs, Chinese Herbal/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Capsules
;
Carcinoma/drug therapy*
6.Exploration and application of pyrolysis in production of fuel gas from traditional Chinese medicine solid waste under "dual carbon" goals.
Ying-Lei LU ; Xu LONG ; Ke-Ying WANG ; Jing-Li LIU ; Yan-Lei ZHANG ; Yu-Ping TANG
China Journal of Chinese Materia Medica 2025;50(6):1437-1448
Traditional Chinese medicine(TCM) solid waste is characterized by widespread availability, renewability, and substantial production volume. In the context of the "dual carbon" goals, the pyrolysis of TCM solid waste for producing fuel gas for recycling in pharmaceutical production has emerged as a crucial strategy for optimizing the energy structure in the TCM industry and developing renewable energy. This paper comprehensively reviews both internal and external factors that influence the pyrolysis of TCM solid waste. Internal factors encompass moisture content, particle size, ash content, and the morphology of the raw materials, while external factors include pyrolysis conditions, equivalence ratios, types of gasifiers, and gasifying agents. Furthermore, this paper details the challenges associated with the pyrolysis of TCM solid waste, such as the dispersion of feedstocks, the diversity of resources, the complexity of the pyrolysis process, and the variations in gasifier performance. Finally, this paper proposes measures to address these challenges. This paper aims to provide insights into the development of a circular economy for TCM resources and the advancement of low-carbon energy utilization in the TCM industry.
Pyrolysis
;
Carbon/chemistry*
;
Medicine, Chinese Traditional
;
Solid Waste/analysis*
;
Drugs, Chinese Herbal/chemistry*
;
Gases/chemistry*
7.Construction of a multigene expression system for plants and verification of its function.
Yin-Yin JIANG ; Ya-Nan TANG ; Yu-Ping TAN ; Shu-Fu SUN ; Juan GUO ; Guang-Hong CUI ; Jin-Fu TANG
China Journal of Chinese Materia Medica 2025;50(12):3291-3296
Constructing an efficient and easy-to-operate multigene expression system is currently a crucial part of plant genetic engineering. In this study, a fragment carrying three independent gene expression cassettes and the expression unit of the gene-silencing suppressor protein(RNA silencing suppressor 19 kDa protein, P19) simultaneously was designed and constructed. This fragment was cloned into the commonly used plant expression vector pCAMBIA300, and the plasmid pC1300-TP2-P19 was obtained. Each gene expression cassette consists of different promoters, fusion tags, and terminators. The target gene can be flexibly inserted into the corresponding site through enzymatic digestion and ligation or recombination and fused with different protein tags, which provides great convenience for subsequent detection. The enhanced green fluorescent protein(eGFP) reporter gene was individually constructed into each expression cassette to verify the feasibility of this vector system. The results of tobacco transient expression and laser-confocal microscopy showed that each expression cassette presented independent and normal expression. Meanwhile, the three key enzyme genes in the betanin synthesis pathway, BvCYP76AD, BvDODA1, and DbDOPA5GT, were constructed into the three expression cassettes. The results of tobacco transient expression phenotype, protein immunoblotting(Western blot), and chemical detection of product demonstrated that the three exogenous genes were highly expressed, and the target compound betanin was successfully produced. The above results indicated that the constructed multigene expression system for plants in this study was efficient and reliable and can achieve the co-transformation of multiple plant genes. It can provide a reliable vector platform for the analysis of plant natural product synthesis pathways, functional verification, and plant metabolic engineering.
Nicotiana/metabolism*
;
Genetic Vectors/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Plants, Genetically Modified/metabolism*
;
Genetic Engineering/methods*
;
Green Fluorescent Proteins/metabolism*
;
Gene Expression
8.Expert consensus on evaluation index system construction for new traditional Chinese medicine(TCM) from TCM clinical practice in medical institutions.
Li LIU ; Lei ZHANG ; Wei-An YUAN ; Zhong-Qi YANG ; Jun-Hua ZHANG ; Bao-He WANG ; Si-Yuan HU ; Zu-Guang YE ; Ling HAN ; Yue-Hua ZHOU ; Zi-Feng YANG ; Rui GAO ; Ming YANG ; Ting WANG ; Jie-Lai XIA ; Shi-Shan YU ; Xiao-Hui FAN ; Hua HUA ; Jia HE ; Yin LU ; Zhong WANG ; Jin-Hui DOU ; Geng LI ; Yu DONG ; Hao YU ; Li-Ping QU ; Jian-Yuan TANG
China Journal of Chinese Materia Medica 2025;50(12):3474-3482
Medical institutions, with their clinical practice foundation and abundant human use experience data, have become important carriers for the inheritance and innovation of traditional Chinese medicine(TCM) and the "cradles" of the preparation of new TCM. To effectively promote the transformation of new TCM originating from the TCM clinical practice in medical institutions and establish an effective evaluation index system for the transformation of new TCM conforming to the characteristics of TCM, consensus experts adopted the literature research, questionnaire survey, Delphi method, etc. By focusing on the policy and technical evaluation of new TCM originating from the TCM clinical practice in medical institutions, a comprehensive evaluation from the dimensions of drug safety, efficacy, feasibility, and characteristic advantages was conducted, thus forming a comprehensive evaluation system with four primary indicators and 37 secondary indicators. The expert consensus reached aims to encourage medical institutions at all levels to continuously improve the high-quality research and development and transformation of new TCM originating from the TCM clinical practice in medical institutions and targeted at clinical needs, so as to provide a decision-making basis for the preparation, selection, cultivation, and transformation of new TCM for medical institutions, improve the development efficiency of new TCM, and precisely respond to the public medication needs.
Medicine, Chinese Traditional/standards*
;
Humans
;
Consensus
;
Drugs, Chinese Herbal/therapeutic use*
;
Surveys and Questionnaires
9.Effects and mechanisms of total flavones of Abelmoschus manihot combined with empagliflozin in attenuating diabetic tubulopathy through multiple targets based on mitochondrial homeostasis and ZBP1-mediated PANoptosis.
Si-Yu CHA ; Meng WANG ; Yi-Gang WAN ; Si-Ping DING ; Yu WANG ; Shi-Yu SHEN ; Wei WU ; Ying-Lu LIU ; Qi-Jun FANG ; Yue TU ; Hai-Tao TANG
China Journal of Chinese Materia Medica 2025;50(13):3738-3753
This study aimed to explore the mechanisms and molecular targets of total flavones of Abelmoschus manihot(TFA) plus empagliflozin(EM) in attenuating diabetic tubulopathy(DT) by targeting mitochondrial homeostasis and pyroptosis-apoptosis-necroptosis(PANoptosis). In the in vivo study, the authors established the DT rat models through a combination of uninephrectomy, administration of streptozotocin via intraperitoneal injections, and exposure to a high-fat diet. Following modeling successfully, the DT rat models received either TFA, EM, TFA+EM, or saline(as a vehicle) by gavage for eight weeks, respectively. In the in vitro study, the authors subjected the NRK52E cells with or without knock-down Z-DNA binding protein 1(ZBP1) to a high-glucose(HG) environment and various treatments including TFA, EM, and TFA+EM. In the in vivo and in vitro studies, The authors investigated the relative characteristics of renal tubular injury and renal tubular epithelial cells damage induced by reactive oxygen species(ROS), analyzed the relative characteristics of renal tubular PANoptosis and ZBP1-mediatted PANoptosis in renal tubular epithelial cells, and compared the relative characteristics of the protein expression levels of marked molecules of mitochondrial fission in the kidneys and mitochondrial homeostasis in renal tubular epithelial cells, respectively. Furthermore, in the network pharmacology study, the authors predicted and screened targets of TFA and EM using HERB and SwissTargetPrediction databases; The screened chemical constituents and targets of TFA and EM were constructed the relative network using Cytoscape 3.7.2 network graphics software; The relative targets of DT were integrated using OMIM and GeneCards databases; The intersecting targets of TFA, EM, and DT were enriched and analyzed signaling pathways by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG) software using DAVID database. In vivo study results showed that TFA+EM could improve renal tubular injury, the protein expression levels and characteristics of key signaling molecules in PANoptosis pathway in the kidneys, and the protein expression levels of marked molecules of mitochondrial fission in the kidneys. And that, the ameliorative effects in vivo of TFA+EM were both superior to TFA or EM. Network pharmacology study results showed that TFA+EM treated DT by regulating the PANoptosis signaling pathway. In vitro study results showed that TFA+EM could improve ROS-induced cell injury, ZBP1-mediatted PANoptosis, and mitochondrial homeostasis in renal tubular epithelial cells under a state of HG, including the protein expression levels of marked molecules of mitochondrial fission, mitochondrial ultrastructure, and membrane potential level. And that, the ameliorative effects in vitro of TFA+EM were both superior to TFA or EM. More importantly, using the NRK52E cells with knock-down ZBP1, the authors found that, indeed, ZBP1 was mediated PANoptosis in renal tubular epithelial cells as an upstream factor. In addition, TFA+EM could regulate the protein expression levels of marked signaling molecules of PANoptosis by targeting ZBP1. In summary, this study clarified that TFA+EM, different from TFA or EM, could attenuate DT with multiple targets by ameliorating mitochondrial homeostasis and inhibiting ZBP1-mediated PANoptosis. These findings provide the clear pharmacological evidence for the clinical treatment of DT with a novel strategy of TFA+EM, which is named "coordinated traditional Chinese and western medicine".
Animals
;
Rats
;
Mitochondria/metabolism*
;
Benzhydryl Compounds/administration & dosage*
;
Glucosides/administration & dosage*
;
Abelmoschus/chemistry*
;
Male
;
Homeostasis/drug effects*
;
Flavones/administration & dosage*
;
Rats, Sprague-Dawley
;
Diabetic Nephropathies/physiopathology*
;
Drugs, Chinese Herbal/administration & dosage*
;
DNA-Binding Proteins/genetics*
;
Humans
;
Apoptosis/drug effects*
10.Early clinical outcomes of 3D-printed individualised customised prostheses in hip revision combined severe bone defect.
Hong-Ping WANG ; Ming-You WANG ; Xiao-Qin YANG ; Zhuo-Dong TANG ; Xun-Zhou SONG ; Yu-Ping LAN
China Journal of Orthopaedics and Traumatology 2025;38(2):163-169
OBJECTIVE:
To explore the early clinical outcomes of 3D printed individualised customised prostheses for in hip revision in patients with combined severe bone defects.
METHODS:
Twenty-two patients from January 2021 to May 2023 underwent hip revision using 3D printed personalised customised prostheses were retrospective analyzed, including 10 males and 12 females, age 28 to 78 with a mean of (58.9±12.8) years old. All of patients were combined with severe bone defects (Parprosky type Ⅲ). Among of them, 9 patients had periprosthetic infections and 13 patients had aseptic prosthesis loosening. All patients were treated with a 3D printed personalised prosthesis protocol, patients with the periprosthetic infection received a second stage revision after infection control. The operation time, preoperative waiting time, intraoperative and postoperative complications were recorded, and the clinical efficacy were evaluated at the final follow-up using the visual analogue scale (VAS) for pain, the Harris hip score.
RESULTS:
One patient was lost to follow-up and the remaining 21 patients were followed up for 10 to 15 with a mean of (12.91±1.44) months after surgery. All patients completed surgery as planned, with an operative time of 135 to 390 with a mean of (165.4±39.3) minutes and a preoperative waiting time of 7 to 16 with a mean of (10.5±3.3) days. Regarding patient complications:one patient had a severe intraoperative periprosthetic femoral fracture due to the combination of severe osteoporosis; one patient had an intraoperative greater trochanteric femur fracture. At the latest follow-up, all patients had good position of the custom-made prosthesis and no loosening of the prosthesis;all patients had good wound healing and no local redness or swelling. The total Harris score at the final follow-up (85.86±7.04) was significantly improved compared to the preoperative (44.86±2.36), P<0.001. The VAS at the last follow-up (2.19±0.87) was significantly improved compared with preoperative (7.41±0.96), P<0.001.
CONCLUSION
The clinical efficacy of 3D-printed personalised customised prosthesis in combined severe bone defect hip revision is satisfactory, but due to the increased preoperative waiting time of the patients and certain risks, certain indications should be mastered when applying in the clinic.
Humans
;
Male
;
Female
;
Printing, Three-Dimensional
;
Middle Aged
;
Aged
;
Adult
;
Retrospective Studies
;
Hip Prosthesis
;
Arthroplasty, Replacement, Hip
;
Reoperation
;
Prosthesis Design
;
Treatment Outcome

Result Analysis
Print
Save
E-mail