1.Anti-obesity effects of ethanol extract of green Citrus junos peel enriched in naringin and hesperidin in vitro andin vivo
Yu-Jin HEO ; Mi-Kyung LEE ; Ju-Hye IM ; Bo Seop KIM ; Hae-In LEE
Nutrition Research and Practice 2025;19(1):1-13
BACKGROUND/OBJECTIVES:
Green Citrus junos (yuja) peel extract has higher naringin and hesperidin contents and antioxidant activity than yellow yuja peel extract, but its anti-obesity effects are unclear. This study examined the anti-obesity properties of green yuja peel ethanol extract (GYE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese mice.MATERIALS/METHODS: The effects of GYE on adipocyte differentiation were assessed by measuring Oil red O staining, mRNA and protein expression. The beneficial effects of GYE on HFD-induced obese mice were evaluated using the body weight, body composition, visceral fat size, and biochemical analysis.
RESULTS:
GYE inhibited adipocyte differentiation and lipid accumulation compared to the control cells, as evidenced by Oil red O staining and the triglyceride level, respectively.GYE down-regulated the adipogenic genes CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), and lipogenic gene diacylglycerol O-acyltransferase 2 (DGAT2). GYE at 100 μg/mL downregulated the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), and their downstream targets PPARγ and sterol regulatory element-binding protein-1 (SREBP-1c) compared to the control group. In obese mice, GYE (100 mg/kg/day) reduced the body weight, body weight gain, and serum lipid level compared to the control group. Analysis using dual-energy X-ray absorptiometry showed that GYE decreased the fat percentage, fat in tissue, and abdominal circumference, while it increased the lean percentage compared to control group.Furthermore, GYE significantly reduced the visceral fat weight and size compared to the control group.
CONCLUSION
GYE suppressed adipocyte differentiation by inhibiting the PI3K-Akt pathway in vitro and reduced the body fat mass and visceral adiposity in HFD-induced obese mice.These findings suggest that GYE is a viable natural option for combating obesity.
2.Association of Nutritional Intake with Physical Activity and Handgrip Strength in Individuals with Airflow Limitation
I Re HEO ; Tae Hoon KIM ; Jong Hwan JEONG ; Manbong HEO ; Sun Mi JU ; Jung-Wan YOO ; Seung Jun LEE ; Yu Ji CHO ; Yi Yeong JEONG ; Jong Deog LEE ; Ho Cheol KIM
Tuberculosis and Respiratory Diseases 2025;88(1):120-129
Background:
We investigated whether nutritional intake is associated with physical activity (PA) and handgrip strength (HGS) in individuals with airflow limitation.
Methods:
This study analyzed data from the 2014 and 2016 Korean National Health and Nutrition Examination Survey. We assessed total protein intake (g/day), caloric intake (kcal/day), and other nutritional intakes, using a 24-hour dietary recall questionnaire. HGS was measured three times for each hand using a digital grip strength dynamometer, and PA was assessed as health-enhancing PA. Airflow limitation was defined as a forced expiratory volume/forced vital capacity ratio of 0.7 in individuals over 40 years of age. Participants were categorized into groups based on their PA levels and HGS measurements: active aerobic PA vs. non-active aerobic PA, and normal HGS vs. low HGS.
Results:
Among the 622 individuals with airflow limitation, those involved in active aerobic PA and those with higher HGS had notably higher total food, calorie, water, protein, and lipid intake. The correlations between protein and caloric intake with HGS were strong (correlation coefficients=0.344 and 0.346, respectively). The forest plots show that higher intakes of food, water, calories, protein, and lipids are positively associated with active aerobic PA, while higher intakes of these nutrients are inversely associated with low HGS. However, in the multivariate logistic regression analysis, no significant associations were observed between nutritional intake and active aerobic PA or HGS.
Conclusion
Nutritional intake was found to not be an independent factor associated with PA and HGS. However, the observed correlations suggest potential indirect effects that warrant further investigation.
3.Anti-obesity effects of ethanol extract of green Citrus junos peel enriched in naringin and hesperidin in vitro andin vivo
Yu-Jin HEO ; Mi-Kyung LEE ; Ju-Hye IM ; Bo Seop KIM ; Hae-In LEE
Nutrition Research and Practice 2025;19(1):1-13
BACKGROUND/OBJECTIVES:
Green Citrus junos (yuja) peel extract has higher naringin and hesperidin contents and antioxidant activity than yellow yuja peel extract, but its anti-obesity effects are unclear. This study examined the anti-obesity properties of green yuja peel ethanol extract (GYE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese mice.MATERIALS/METHODS: The effects of GYE on adipocyte differentiation were assessed by measuring Oil red O staining, mRNA and protein expression. The beneficial effects of GYE on HFD-induced obese mice were evaluated using the body weight, body composition, visceral fat size, and biochemical analysis.
RESULTS:
GYE inhibited adipocyte differentiation and lipid accumulation compared to the control cells, as evidenced by Oil red O staining and the triglyceride level, respectively.GYE down-regulated the adipogenic genes CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), and lipogenic gene diacylglycerol O-acyltransferase 2 (DGAT2). GYE at 100 μg/mL downregulated the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), and their downstream targets PPARγ and sterol regulatory element-binding protein-1 (SREBP-1c) compared to the control group. In obese mice, GYE (100 mg/kg/day) reduced the body weight, body weight gain, and serum lipid level compared to the control group. Analysis using dual-energy X-ray absorptiometry showed that GYE decreased the fat percentage, fat in tissue, and abdominal circumference, while it increased the lean percentage compared to control group.Furthermore, GYE significantly reduced the visceral fat weight and size compared to the control group.
CONCLUSION
GYE suppressed adipocyte differentiation by inhibiting the PI3K-Akt pathway in vitro and reduced the body fat mass and visceral adiposity in HFD-induced obese mice.These findings suggest that GYE is a viable natural option for combating obesity.
4.Association of Nutritional Intake with Physical Activity and Handgrip Strength in Individuals with Airflow Limitation
I Re HEO ; Tae Hoon KIM ; Jong Hwan JEONG ; Manbong HEO ; Sun Mi JU ; Jung-Wan YOO ; Seung Jun LEE ; Yu Ji CHO ; Yi Yeong JEONG ; Jong Deog LEE ; Ho Cheol KIM
Tuberculosis and Respiratory Diseases 2025;88(1):120-129
Background:
We investigated whether nutritional intake is associated with physical activity (PA) and handgrip strength (HGS) in individuals with airflow limitation.
Methods:
This study analyzed data from the 2014 and 2016 Korean National Health and Nutrition Examination Survey. We assessed total protein intake (g/day), caloric intake (kcal/day), and other nutritional intakes, using a 24-hour dietary recall questionnaire. HGS was measured three times for each hand using a digital grip strength dynamometer, and PA was assessed as health-enhancing PA. Airflow limitation was defined as a forced expiratory volume/forced vital capacity ratio of 0.7 in individuals over 40 years of age. Participants were categorized into groups based on their PA levels and HGS measurements: active aerobic PA vs. non-active aerobic PA, and normal HGS vs. low HGS.
Results:
Among the 622 individuals with airflow limitation, those involved in active aerobic PA and those with higher HGS had notably higher total food, calorie, water, protein, and lipid intake. The correlations between protein and caloric intake with HGS were strong (correlation coefficients=0.344 and 0.346, respectively). The forest plots show that higher intakes of food, water, calories, protein, and lipids are positively associated with active aerobic PA, while higher intakes of these nutrients are inversely associated with low HGS. However, in the multivariate logistic regression analysis, no significant associations were observed between nutritional intake and active aerobic PA or HGS.
Conclusion
Nutritional intake was found to not be an independent factor associated with PA and HGS. However, the observed correlations suggest potential indirect effects that warrant further investigation.
5.Anti-obesity effects of ethanol extract of green Citrus junos peel enriched in naringin and hesperidin in vitro andin vivo
Yu-Jin HEO ; Mi-Kyung LEE ; Ju-Hye IM ; Bo Seop KIM ; Hae-In LEE
Nutrition Research and Practice 2025;19(1):1-13
BACKGROUND/OBJECTIVES:
Green Citrus junos (yuja) peel extract has higher naringin and hesperidin contents and antioxidant activity than yellow yuja peel extract, but its anti-obesity effects are unclear. This study examined the anti-obesity properties of green yuja peel ethanol extract (GYE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese mice.MATERIALS/METHODS: The effects of GYE on adipocyte differentiation were assessed by measuring Oil red O staining, mRNA and protein expression. The beneficial effects of GYE on HFD-induced obese mice were evaluated using the body weight, body composition, visceral fat size, and biochemical analysis.
RESULTS:
GYE inhibited adipocyte differentiation and lipid accumulation compared to the control cells, as evidenced by Oil red O staining and the triglyceride level, respectively.GYE down-regulated the adipogenic genes CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), and lipogenic gene diacylglycerol O-acyltransferase 2 (DGAT2). GYE at 100 μg/mL downregulated the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), and their downstream targets PPARγ and sterol regulatory element-binding protein-1 (SREBP-1c) compared to the control group. In obese mice, GYE (100 mg/kg/day) reduced the body weight, body weight gain, and serum lipid level compared to the control group. Analysis using dual-energy X-ray absorptiometry showed that GYE decreased the fat percentage, fat in tissue, and abdominal circumference, while it increased the lean percentage compared to control group.Furthermore, GYE significantly reduced the visceral fat weight and size compared to the control group.
CONCLUSION
GYE suppressed adipocyte differentiation by inhibiting the PI3K-Akt pathway in vitro and reduced the body fat mass and visceral adiposity in HFD-induced obese mice.These findings suggest that GYE is a viable natural option for combating obesity.
6.Association of Nutritional Intake with Physical Activity and Handgrip Strength in Individuals with Airflow Limitation
I Re HEO ; Tae Hoon KIM ; Jong Hwan JEONG ; Manbong HEO ; Sun Mi JU ; Jung-Wan YOO ; Seung Jun LEE ; Yu Ji CHO ; Yi Yeong JEONG ; Jong Deog LEE ; Ho Cheol KIM
Tuberculosis and Respiratory Diseases 2025;88(1):120-129
Background:
We investigated whether nutritional intake is associated with physical activity (PA) and handgrip strength (HGS) in individuals with airflow limitation.
Methods:
This study analyzed data from the 2014 and 2016 Korean National Health and Nutrition Examination Survey. We assessed total protein intake (g/day), caloric intake (kcal/day), and other nutritional intakes, using a 24-hour dietary recall questionnaire. HGS was measured three times for each hand using a digital grip strength dynamometer, and PA was assessed as health-enhancing PA. Airflow limitation was defined as a forced expiratory volume/forced vital capacity ratio of 0.7 in individuals over 40 years of age. Participants were categorized into groups based on their PA levels and HGS measurements: active aerobic PA vs. non-active aerobic PA, and normal HGS vs. low HGS.
Results:
Among the 622 individuals with airflow limitation, those involved in active aerobic PA and those with higher HGS had notably higher total food, calorie, water, protein, and lipid intake. The correlations between protein and caloric intake with HGS were strong (correlation coefficients=0.344 and 0.346, respectively). The forest plots show that higher intakes of food, water, calories, protein, and lipids are positively associated with active aerobic PA, while higher intakes of these nutrients are inversely associated with low HGS. However, in the multivariate logistic regression analysis, no significant associations were observed between nutritional intake and active aerobic PA or HGS.
Conclusion
Nutritional intake was found to not be an independent factor associated with PA and HGS. However, the observed correlations suggest potential indirect effects that warrant further investigation.
7.Association of Nutritional Intake with Physical Activity and Handgrip Strength in Individuals with Airflow Limitation
I Re HEO ; Tae Hoon KIM ; Jong Hwan JEONG ; Manbong HEO ; Sun Mi JU ; Jung-Wan YOO ; Seung Jun LEE ; Yu Ji CHO ; Yi Yeong JEONG ; Jong Deog LEE ; Ho Cheol KIM
Tuberculosis and Respiratory Diseases 2025;88(1):120-129
Background:
We investigated whether nutritional intake is associated with physical activity (PA) and handgrip strength (HGS) in individuals with airflow limitation.
Methods:
This study analyzed data from the 2014 and 2016 Korean National Health and Nutrition Examination Survey. We assessed total protein intake (g/day), caloric intake (kcal/day), and other nutritional intakes, using a 24-hour dietary recall questionnaire. HGS was measured three times for each hand using a digital grip strength dynamometer, and PA was assessed as health-enhancing PA. Airflow limitation was defined as a forced expiratory volume/forced vital capacity ratio of 0.7 in individuals over 40 years of age. Participants were categorized into groups based on their PA levels and HGS measurements: active aerobic PA vs. non-active aerobic PA, and normal HGS vs. low HGS.
Results:
Among the 622 individuals with airflow limitation, those involved in active aerobic PA and those with higher HGS had notably higher total food, calorie, water, protein, and lipid intake. The correlations between protein and caloric intake with HGS were strong (correlation coefficients=0.344 and 0.346, respectively). The forest plots show that higher intakes of food, water, calories, protein, and lipids are positively associated with active aerobic PA, while higher intakes of these nutrients are inversely associated with low HGS. However, in the multivariate logistic regression analysis, no significant associations were observed between nutritional intake and active aerobic PA or HGS.
Conclusion
Nutritional intake was found to not be an independent factor associated with PA and HGS. However, the observed correlations suggest potential indirect effects that warrant further investigation.
8.Anti-obesity effects of ethanol extract of green Citrus junos peel enriched in naringin and hesperidin in vitro andin vivo
Yu-Jin HEO ; Mi-Kyung LEE ; Ju-Hye IM ; Bo Seop KIM ; Hae-In LEE
Nutrition Research and Practice 2025;19(1):1-13
BACKGROUND/OBJECTIVES:
Green Citrus junos (yuja) peel extract has higher naringin and hesperidin contents and antioxidant activity than yellow yuja peel extract, but its anti-obesity effects are unclear. This study examined the anti-obesity properties of green yuja peel ethanol extract (GYE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese mice.MATERIALS/METHODS: The effects of GYE on adipocyte differentiation were assessed by measuring Oil red O staining, mRNA and protein expression. The beneficial effects of GYE on HFD-induced obese mice were evaluated using the body weight, body composition, visceral fat size, and biochemical analysis.
RESULTS:
GYE inhibited adipocyte differentiation and lipid accumulation compared to the control cells, as evidenced by Oil red O staining and the triglyceride level, respectively.GYE down-regulated the adipogenic genes CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), and lipogenic gene diacylglycerol O-acyltransferase 2 (DGAT2). GYE at 100 μg/mL downregulated the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), and their downstream targets PPARγ and sterol regulatory element-binding protein-1 (SREBP-1c) compared to the control group. In obese mice, GYE (100 mg/kg/day) reduced the body weight, body weight gain, and serum lipid level compared to the control group. Analysis using dual-energy X-ray absorptiometry showed that GYE decreased the fat percentage, fat in tissue, and abdominal circumference, while it increased the lean percentage compared to control group.Furthermore, GYE significantly reduced the visceral fat weight and size compared to the control group.
CONCLUSION
GYE suppressed adipocyte differentiation by inhibiting the PI3K-Akt pathway in vitro and reduced the body fat mass and visceral adiposity in HFD-induced obese mice.These findings suggest that GYE is a viable natural option for combating obesity.
9.Association of Nutritional Intake with Physical Activity and Handgrip Strength in Individuals with Airflow Limitation
I Re HEO ; Tae Hoon KIM ; Jong Hwan JEONG ; Manbong HEO ; Sun Mi JU ; Jung-Wan YOO ; Seung Jun LEE ; Yu Ji CHO ; Yi Yeong JEONG ; Jong Deog LEE ; Ho Cheol KIM
Tuberculosis and Respiratory Diseases 2025;88(1):120-129
Background:
We investigated whether nutritional intake is associated with physical activity (PA) and handgrip strength (HGS) in individuals with airflow limitation.
Methods:
This study analyzed data from the 2014 and 2016 Korean National Health and Nutrition Examination Survey. We assessed total protein intake (g/day), caloric intake (kcal/day), and other nutritional intakes, using a 24-hour dietary recall questionnaire. HGS was measured three times for each hand using a digital grip strength dynamometer, and PA was assessed as health-enhancing PA. Airflow limitation was defined as a forced expiratory volume/forced vital capacity ratio of 0.7 in individuals over 40 years of age. Participants were categorized into groups based on their PA levels and HGS measurements: active aerobic PA vs. non-active aerobic PA, and normal HGS vs. low HGS.
Results:
Among the 622 individuals with airflow limitation, those involved in active aerobic PA and those with higher HGS had notably higher total food, calorie, water, protein, and lipid intake. The correlations between protein and caloric intake with HGS were strong (correlation coefficients=0.344 and 0.346, respectively). The forest plots show that higher intakes of food, water, calories, protein, and lipids are positively associated with active aerobic PA, while higher intakes of these nutrients are inversely associated with low HGS. However, in the multivariate logistic regression analysis, no significant associations were observed between nutritional intake and active aerobic PA or HGS.
Conclusion
Nutritional intake was found to not be an independent factor associated with PA and HGS. However, the observed correlations suggest potential indirect effects that warrant further investigation.
10.Anti-obesity effects of ethanol extract of green Citrus junos peel enriched in naringin and hesperidin in vitro andin vivo
Yu-Jin HEO ; Mi-Kyung LEE ; Ju-Hye IM ; Bo Seop KIM ; Hae-In LEE
Nutrition Research and Practice 2025;19(1):1-13
BACKGROUND/OBJECTIVES:
Green Citrus junos (yuja) peel extract has higher naringin and hesperidin contents and antioxidant activity than yellow yuja peel extract, but its anti-obesity effects are unclear. This study examined the anti-obesity properties of green yuja peel ethanol extract (GYE) in 3T3-L1 cells and high-fat diet (HFD)-induced obese mice.MATERIALS/METHODS: The effects of GYE on adipocyte differentiation were assessed by measuring Oil red O staining, mRNA and protein expression. The beneficial effects of GYE on HFD-induced obese mice were evaluated using the body weight, body composition, visceral fat size, and biochemical analysis.
RESULTS:
GYE inhibited adipocyte differentiation and lipid accumulation compared to the control cells, as evidenced by Oil red O staining and the triglyceride level, respectively.GYE down-regulated the adipogenic genes CCAAT/enhancer binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), and lipogenic gene diacylglycerol O-acyltransferase 2 (DGAT2). GYE at 100 μg/mL downregulated the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt), and their downstream targets PPARγ and sterol regulatory element-binding protein-1 (SREBP-1c) compared to the control group. In obese mice, GYE (100 mg/kg/day) reduced the body weight, body weight gain, and serum lipid level compared to the control group. Analysis using dual-energy X-ray absorptiometry showed that GYE decreased the fat percentage, fat in tissue, and abdominal circumference, while it increased the lean percentage compared to control group.Furthermore, GYE significantly reduced the visceral fat weight and size compared to the control group.
CONCLUSION
GYE suppressed adipocyte differentiation by inhibiting the PI3K-Akt pathway in vitro and reduced the body fat mass and visceral adiposity in HFD-induced obese mice.These findings suggest that GYE is a viable natural option for combating obesity.

Result Analysis
Print
Save
E-mail