1.Research advances in the disease burden of viral hepatitis in China
Jian LI ; Fuzhen WANG ; Zhongdan CHEN ; Jinlei QI ; Ailing WANG ; Fanghui ZHAO ; Yuanyuan KONG ; Jing SUN ; Jiaqi KANG ; Zundong YIN ; Zhongfu LIU ; Jidong JIA ; Yu WANG
Journal of Clinical Hepatology 2025;41(2):221-227
Over the past three decades, China has made significant progress in the prevention and control of viral hepatitis, and the incidence rates of new-onset pediatric hepatitis B virus infections and acute viral hepatitis in the population have reduced to a relatively low level; however, there is still a heavy disease burden of chronic viral hepatitis in China, which severely affects the health status of the population. This study systematically summarizes the achievements of viral hepatitis prevention and control in China, analyzes existing problems and challenges, and proposes comprehensive prevention and control strategies and measures to eliminate viral hepatitis as a public health threat based on the national conditions of China, in order to provide a reference for related departments in China on how to achieve the action targets for eliminating viral hepatitis as a public health threat by 2030.
2.The Effects of Facilitation and Inhibition During Multimodal Somatosensory Integration
Yu ZHANG ; Ming ZHANG ; Ya-Zhuo KONG
Progress in Biochemistry and Biophysics 2025;52(4):845-857
The somatosensory system, including modalities such as touch, temperature, and pain, is essential for perceiving and interacting with the environment. When individuals encounter different somatosensory modalities, they interact through a process called multimodal somatosensory integration. This integration is essential for accurate perception, motor coordination, pain management, and adaptive behavior. Disruptions in this process can lead to a variety of sensory disorders and complicate rehabilitation efforts. However, research on the behavioral patterns and neural mechanisms underlying multimodal somatosensory integration remains limited. According to previous studies, multimodal somatosensory integration can result in facilitative or inhibitory effects depending on factors like stimulus type, intensity, and spatial proximity. Facilitative effects are observed primarily when stimuli from the same sensory modality (e.g., two touch or temperature stimuli) are presented simultaneously, leading to amplified perceptual strength and quicker reaction times. Additionally, certain external factors, such as cooling, can increase sensitivity to other sensory inputs, further promoting facilitative integration. In contrast, inhibitory effects may also emerge when stimuli from different sensory modalities interact, particularly between touch and pain. Under such conditions, one sensory input (e.g., vibration or non-noxious temperature stimulation) can effectively reduce the perceived intensity of the other, often resulting in reduced pain perception. These facilitative and inhibitory interactions are critical for efficient processing in a multi-stimulus environment and play a role in modulating the experience of somatosensory inputs in both normal and clinical contexts. The neural mechanisms underlying multimodal somatosensory integration are multi-tiered, encompassing peripheral receptors, the spinal cord, and various cortical structures. Facilitative integration relies on the synchronous activation of peripheral receptors, which transmit enhanced signals to higher processing centers. At the cortical level, areas such as the primary and secondary somatosensory cortex, through multimodal neuron responses, facilitate combined representation and amplification of sensory signals. In particular, the thalamus is a significant relay station where multisensory neurons exhibit superadditive responses, contributing to facilitation by enhancing signal strength when multiple inputs are present. Inhibitory integration, on the other hand, is mediated by mechanisms within the spinal cord, such as gating processes that limit transmission of competing sensory signals, thus diminishing the perceived intensity of certain inputs. At the cortical level, lateral inhibition within the somatosensory cortex plays a key role in reducing competing signals from non-target stimuli, enabling prioritized processing of the most relevant sensory input. This layered neural architecture supports the dynamic modulation of sensory inputs, balancing facilitation and inhibition to optimize perception. Understanding the neural pathways involved in somatosensory integration has potential clinical implications for diagnosing sensory disorders and developing therapeutic strategies. Future research should focus on elucidating the specific neural circuitry and mechanisms that contribute to these complex interactions, providing insights into the broader implications of somatosensory integration on behavior and cognition. In summary, this review highlights the importance of multimodal somatosensory integration in enhancing sensory perception. It also underscores the need for further exploration into the neural underpinnings of these processes to advance our understanding of sensory integration and its applications in clinical settings.
3.Analysis of oxidative stress-related genes and immune infiltration in osteoarthritis
Ao WU ; Peng YU ; Jiawen TENG ; Peng KONG ; Sishan BIAN
Chinese Journal of Tissue Engineering Research 2025;29(2):302-311
BACKGROUND:At present,the pathogenesis of osteoarthritis is still unclear,and there is a lack of effective means to control the disease.Research on osteoarthritis is mostly concentrated in the field of immunity,and there are few studies in the field of oxidative stress. OBJECTIVE:To explore the roles of oxidative stress and immune infiltration in osteoarthritis and to predict related miRNAs and therapeutic agents. METHODS:The GSE55235 dataset(10 samples of osteoarthritis and 10 healthy control samples)and the GSE55457 dataset(10 samples of osteoarthritis and 10 healthy control samples)were obtained from the GEO database for merging to obtain their differentially expressed genes that were combined with oxidative stress genes to get the differentially expressed genes of oxidative stress.The differentially expressed genes of oxidative stress were analyzed for KEGG and GO enrichment,and the osteoarthritis pathways and biological processes were evaluated using GSEA enrichment analysis.The protein-protein interaction network was constructed using the STRING online website and Cytoscape software,and the Degree algorithm was run to get the key genes.The GSE1919 dataset was obtained from the GEO database as a validation dataset,and the key genes were analyzed by variance analysis and receiver operating characteristic curve analysis to get the core genes.In addition,immune infiltration was evaluated by CIBERSORT and the correlation between core genes and immune cells was explored.miRNA prediction of core genes was performed using TargetScan and target drugs were predicted using the DSigDB database. RESULTS AND CONCLUSION:Sixty-five differentially expressed genes and five core genes(IL1B,CXCL8,MYC,NFKBIA,JUN)associated with oxidative stress were identified.Enrichment analysis showed that differentially expressed genes associated with oxidative stress were concentrated in the pathways of oxidative stress,interleukin-17,osteoclast differentiation,fluid shear stress and atherosclerosis.The area under the receiver operating characteristic curve for the five core genes exceeded 0.85,indicating their excellent specificity and sensitivity in diagnosing bone and joint conditions,as well as their close association with immune cells.The predicted miRNA was has-miR-3937,and the therapeutic small-molecule drugs were metformin,ionomycin and celecoxib.To conclude,oxidative stress and immune infiltration exist in osteoarthritis,and immune infiltration is involved in activating oxidative stress.The core genes and predicted miRNAs can be used as novel markers for the diagnosis of osteoarthritis,and small molecule drugs are predicted to treat osteoarthritis.
4.Biomechanical characteristics of lower extremities during counter movement jump in male patients with functional ankle instability
Zilong WANG ; Xin MENG ; Zhiqi ZHANG ; Yu XIE ; Lingyue MENG ; Qiuxia ZHANG ; Lingyu KONG
Chinese Journal of Tissue Engineering Research 2025;29(3):478-485
BACKGROUND:As the end bearing joint of the human body,the ankle joint bears the top-down pressure of the body,which leads to the ankle joint is easy to be damaged in the movement,can induce functional ankle instability,which negatively affects daily life.The study of lower extremity biomechanics in patients with functional ankle instability during counter movement jump is of great significance for scientific training,prevention of ankle injury,and clinical rehabilitation after injury. OBJECTIVE:To investigate the kinetics and kinematics of lower limbs in the longitudinal jumping of functional ankle instability population. METHODS:From March to September 2023,15 male patients with functional ankle instability and 15 healthy people,aged 22-28 years old,were recruited in Soochow University.All subjects completed counter movement jump experiment.Vicon infrared high-speed motion capture system and Kistler three-dimensional force measuring table were used to simultaneously collect the lower limb kinematics and kinetics indexes of the two groups of subjects at the take-off stage of counter movement jump,the instant off the ground,the initial landing moment and the peak moment of vertical ground reaction force. RESULTS AND CONCLUSION:(1)At the instant off the ground,the affected side of the functional ankle instability group showed smaller knee internal rotation moment(P=0.020)and smaller ankle internal rotation moment(P=0.009)compared with the affected side of the healthy control group.(2)At the moment of landing,the affected side of the functional ankle instability group showed a smaller hip flexion angle than the affected side of the healthy control group(P=0.039).Compared with the healthy control group,functional ankle instability group showed smaller hip abduction angle(P=0.022),smaller knee varus angle(P=0.010),larger knee external rotation angle(P=0.021),smaller ankle varus angle(P=0.004),and smaller external ankle rotation angle(P=0.008).(3)At the peak of vertical ground reaction force,functional ankle instability group showed a smaller ankle varus angle than healthy control group(P=0.044).(4)The results showed that the lower limb biomechanical characteristics of the patients with functional ankle instability were abnormal compared with the healthy people during counter movement jump,which mainly showed the changes of the kinematics and kinetics indexes of the lower limb joints in the sagittal plane and the frontal plane at the moment of lift-off and landing.These changes reflect that people with functional ankle instability adopt rigid take-off and landing patterns when performing counter movement jump,tend to transfer the load of the affected ankle joint to other joints of the lower limb,and show compensatory phenomenon of the healthy lower limb.Therefore,detection and correction of abnormal biomechanical features should be a part of rehabilitation training for those with functional ankle instability.
5.Fast Object Perception in The Subcortical Pathway: a Commentary on Wang et al.’s Paper in Human Brain Mapping (2023)
Hao-Yun MA ; Yu-Yin WEI ; Li-Ping HU
Progress in Biochemistry and Biophysics 2025;52(7):1904-1908
The subcortical visual pathway is generally thought to be involved in dangerous information processing, such as fear processing and defensive behavior. A recent study, published in Human Brain Mapping, shows a new function of the subcortical pathway involved in the fast processing of non-emotional object perception. Rapid object processing is a critical function of visual system. Topological perception theory proposes that the initial perception of objects begins with the extraction of topological property (TP). However, the mechanism of rapid TP processing remains unclear. The researchers investigated the subcortical mechanism of TP processing with transcranial magnetic stimulation (TMS). They find that a subcortical magnocellular pathway is responsible for the early processing of TP, and this subcortical processing of TP accelerates object recognition. Based on their findings, we propose a novel training approach called subcortical magnocellular pathway training (SMPT), aimed at improving the efficiency of the subcortical M pathway to restore visual and attentional functions in disorders associated with subcortical pathway dysfunction.
6.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
7.Advancing breast cancer and lung cancer screening: Expert perspectives to advance programmes in Singapore.
Clive TAN ; Ern Yu TAN ; Geak Poh TAN ; Ravindran KANESVARAN
Annals of the Academy of Medicine, Singapore 2025;54(8):498-504
INTRODUCTION:
The high prevalence and mortality rates of breast cancer and lung cancer in Singapore necessitate robust screening programmes to enable early detection and intervention for improved patient outcomes, yet 2024 uptake and coverage remain suboptimal. This narrative review synthesises expert perspectives from a recent roundtable discussion and proposes strategies to advance breast cancer and lung cancer screening programmes.
METHOD:
A 2024 roundtable convened clinical practitioners, health policymakers, researchers and patient advocates discussed current challenges and opportunities for improving cancer screening in Singapore. Perspectives and insights were analysed to identify themes related to existing programme gaps, opportunities for innovation and implementation challenges.
DISCUSSION:
Singapore's national breast cancer screening programme has been in place for over 2 decades, yet screening uptake remains suboptimal. A national lung cancer screening programme, in contrast, is still in its early stages of implementation. Regardless, employment of risk stratification approaches that integrate genetic, demographic and lifestyle factors could enhance screening effectiveness by identifying high-risk indivi-duals, while also taking local epidemiological trends into consideration. Integration of digital health technologies, artificial intelligence and behavioural change models can enhance cancer screening uptake and accuracy to overcome barriers such as low awareness, cultural beliefs and socioeconomic factors that contribute to low participation rates.
CONCLUSION
Key recommendations include enhancing public awareness, refining screening guidelines, expanding access and applying innovative technologies. A coordinated effort among stakeholders is crucial to continually assess and enhance screening programmes to narrow the practice-policy gap and ultimately reduce breast cancer and lung cancer burden in Singapore.
Humans
;
Singapore/epidemiology*
;
Lung Neoplasms/epidemiology*
;
Breast Neoplasms/epidemiology*
;
Early Detection of Cancer/methods*
;
Female
;
Mass Screening/organization & administration*
8.POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration.
Yizhi XIAO ; Ping YANG ; Wushuang XIAO ; Zhen YU ; Jiaying LI ; Xiaofeng LI ; Jianjiao LIN ; Jieming ZHANG ; Miaomiao PEI ; Linjie HONG ; Juanying YANG ; Zhizhao LIN ; Ping JIANG ; Li XIANG ; Guoxin LI ; Xinbo AI ; Weiyu DAI ; Weimei TANG ; Jide WANG
Chinese Medical Journal 2025;138(7):838-850
BACKGROUND:
The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown.
METHODS:
Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice.
RESULTS:
POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples.
CONCLUSIONS
The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
MicroRNAs/metabolism*
;
Humans
;
Stomach Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Animals
;
Mice
;
Octamer Transcription Factor-1/metabolism*
;
Mice, Nude
;
Class Ia Phosphatidylinositol 3-Kinase/metabolism*
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic/genetics*
;
Male
;
Immunohistochemistry
;
Female
9.Role of radiotherapy in extensive-stage small cell lung cancer after durvalumab-based immunochemotherapy: A retrospective study.
Lingjuan CHEN ; Yi KONG ; Fan TONG ; Ruiguang ZHANG ; Peng DING ; Sheng ZHANG ; Ye WANG ; Rui ZHOU ; Xingxiang PU ; Bolin CHEN ; Fei LIANG ; Qiaoyun TAN ; Yu XU ; Lin WU ; Xiaorong DONG
Chinese Medical Journal 2025;138(17):2130-2138
BACKGROUND:
The purpose of this study was to evaluate the safety and efficacy of subsequent radiotherapy (RT) following first-line treatment with durvalumab plus chemotherapy in patients with extensive-stage small cell lung cancer (ES-SCLC).
METHODS:
A total of 122 patients with ES-SCLC from three hospitals during July 2019 to December 2021 were retrospectively analyzed. Inverse probability of treatment weighting (IPTW) analysis was performed to address potential confounding factors. The primary focus of our evaluation was to assess the impact of RT on progression-free survival (PFS) and overall survival (OS).
RESULTS:
After IPTW analysis, 49 patients received durvalumab plus platinum-etoposide (EP) chemotherapy followed by RT (Durva + EP + RT) and 72 patients received immunochemotherapy (Durva + EP). The median OS was 17.2 months vs . 12.3 months (hazard ratio [HR]: 0.38, 95% confidence interval [CI]: 0.17-0.85, P = 0.020), and the median PFS was 8.9 months vs . 5.9 months (HR: 0.56, 95% CI: 0.32-0.97, P = 0.030) in Durva + EP + RT and Durva + EP groups, respectively. Thoracic radiation therapy (TRT) resulted in longer OS (17.2 months vs . 14.7 months) and PFS (9.1 months vs . 7.2 months) compared to RT directed to other metastatic sites. Among patients with oligo-metastasis, RT also showed significant benefits, with a median OS of 17.4 months vs . 13.7 months and median PFS of 9.8 months vs . 5.9 months compared to no RT. Continuous durvalumab treatment beyond progression (TBP) prolonged OS compared to patients without TBP, in both the Durva + EP + RT (NA vs . 15.8 months, HR: 0.48, 95% CI: 0.14-1.63, P = 0.238) and Durva + EP groups (12.3 months vs . 4.3 months, HR: 0.29, 95% CI: 0.10-0.81, P = 0.018). Grade 3 or 4 adverse events occurred in 13 (26.5%) and 13 (18.1%) patients, respectively, in the two groups; pneumonitis was mostly low-grade.
CONCLUSION
Addition of RT after first-line immunochemotherapy significantly improved survival outcomes with manageable toxicity in ES-SCLC.
Humans
;
Small Cell Lung Carcinoma/therapy*
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Lung Neoplasms/therapy*
;
Aged
;
Antibodies, Monoclonal/therapeutic use*
;
Adult
;
Immunotherapy/methods*
;
Aged, 80 and over
10.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.

Result Analysis
Print
Save
E-mail