1.Controllability Analysis of Structural Brain Networks in Young Smokers
Jing-Jing DING ; Fang DONG ; Hong-De WANG ; Kai YUAN ; Yong-Xin CHENG ; Juan WANG ; Yu-Xin MA ; Ting XUE ; Da-Hua YU
Progress in Biochemistry and Biophysics 2025;52(1):182-193
ObjectiveThe controllability changes of structural brain network were explored based on the control and brain network theory in young smokers, this may reveal that the controllability indicators can serve as a powerful factor to predict the sleep status in young smokers. MethodsFifty young smokers and 51 healthy controls from Inner Mongolia University of Science and Technology were enrolled. Diffusion tensor imaging (DTI) was used to construct structural brain network based on fractional anisotropy (FA) weight matrix. According to the control and brain network theory, the average controllability and the modal controllability were calculated. Two-sample t-test was used to compare the differences between the groups and Pearson correlation analysis to examine the correlation between significant average controllability and modal controllability with Fagerström Test of Nicotine Dependence (FTND) in young smokers. The nodes with the controllability score in the top 10% were selected as the super-controllers. Finally, we used BP neural network to predict the Pittsburgh Sleep Quality Index (PSQI) in young smokers. ResultsThe average controllability of dorsolateral superior frontal gyrus, supplementary motor area, lenticular nucleus putamen, and lenticular nucleus pallidum, and the modal controllability of orbital inferior frontal gyrus, supplementary motor area, gyrus rectus, and posterior cingulate gyrus in the young smokers’ group, were all significantly different from those of the healthy controls group (P<0.05). The average controllability of the right supplementary motor area (SMA.R) in the young smokers group was positively correlated with FTND (r=0.393 0, P=0.004 8), while modal controllability was negatively correlated with FTND (r=-0.330 1, P=0.019 2). ConclusionThe controllability of structural brain network in young smokers is abnormal. which may serve as an indicator to predict sleep condition. It may provide the imaging evidence for evaluating the cognitive function impairment in young smokers.
2.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
3.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
4.A novel homozygous mutation of CFAP300 identified in a Chinese patient with primary ciliary dyskinesia and infertility.
Zheng ZHOU ; Qi QI ; Wen-Hua WANG ; Jie DONG ; Juan-Juan XU ; Yu-Ming FENG ; Zhi-Chuan ZOU ; Li CHEN ; Jin-Zhao MA ; Bing YAO
Asian Journal of Andrology 2025;27(1):113-119
Primary ciliary dyskinesia (PCD) is a clinically rare, genetically and phenotypically heterogeneous condition characterized by chronic respiratory tract infections, male infertility, tympanitis, and laterality abnormalities. PCD is typically resulted from variants in genes encoding assembly or structural proteins that are indispensable for the movement of motile cilia. Here, we identified a novel nonsense mutation, c.466G>T, in cilia- and flagella-associated protein 300 ( CFAP300 ) resulting in a stop codon (p.Glu156*) through whole-exome sequencing (WES). The proband had a PCD phenotype with laterality defects and immotile sperm flagella displaying a combined loss of the inner dynein arm (IDA) and outer dynein arm (ODA). Bioinformatic programs predicted that the mutation is deleterious. Successful pregnancy was achieved through intracytoplasmic sperm injection (ICSI). Our results expand the spectrum of CFAP300 variants in PCD and provide reproductive guidance for infertile couples suffering from PCD caused by them.
Adult
;
Female
;
Humans
;
Male
;
Pregnancy
;
China
;
Ciliary Motility Disorders/genetics*
;
Codon, Nonsense
;
East Asian People/genetics*
;
Exome Sequencing
;
Homozygote
;
Infertility, Male/genetics*
;
Kartagener Syndrome/genetics*
;
Pedigree
;
Sperm Injections, Intracytoplasmic
;
Cytoskeletal Proteins/genetics*
5.Glucocorticoid Discontinuation in Patients with Rheumatoid Arthritis under Background of Chinese Medicine: Challenges and Potentials Coexist.
Chuan-Hui YAO ; Chi ZHANG ; Meng-Ge SONG ; Cong-Min XIA ; Tian CHANG ; Xie-Li MA ; Wei-Xiang LIU ; Zi-Xia LIU ; Jia-Meng LIU ; Xiao-Po TANG ; Ying LIU ; Jian LIU ; Jiang-Yun PENG ; Dong-Yi HE ; Qing-Chun HUANG ; Ming-Li GAO ; Jian-Ping YU ; Wei LIU ; Jian-Yong ZHANG ; Yue-Lan ZHU ; Xiu-Juan HOU ; Hai-Dong WANG ; Yong-Fei FANG ; Yue WANG ; Yin SU ; Xin-Ping TIAN ; Ai-Ping LYU ; Xun GONG ; Quan JIANG
Chinese journal of integrative medicine 2025;31(7):581-589
OBJECTIVE:
To evaluate the dynamic changes of glucocorticoid (GC) dose and the feasibility of GC discontinuation in rheumatoid arthritis (RA) patients under the background of Chinese medicine (CM).
METHODS:
This multicenter retrospective cohort study included 1,196 RA patients enrolled in the China Rheumatoid Arthritis Registry of Patients with Chinese Medicine (CERTAIN) from September 1, 2019 to December 4, 2023, who initiated GC therapy. Participants were divided into the Western medicine (WM) and integrative medicine (IM, combination of CM and WM) groups based on medication regimen. Follow-up was performed at least every 3 months to assess dynamic changes in GC dose. Changes in GC dose were analyzed by generalized estimator equation, the probability of GC discontinuation was assessed using Kaplan-Meier curve, and predictors of GC discontinuation were analyzed by Cox regression. Patients with <12 months of follow-up were excluded for the sensitivity analysis.
RESULTS:
Among 1,196 patients (85.4% female; median age 56.4 years), 880 (73.6%) received IM. Over a median 12-month follow-up, 34.3% (410 cases) discontinued GC, with significantly higher rates in the IM group (40.8% vs. 16.1% in WM; P<0.05). GC dose declined progressively, with IM patients demonstrating faster reductions (median 3.75 mg vs. 5.00 mg in WM at 12 months; P<0.05). Multivariate Cox analysis identified age <60 years [P<0.001, hazard ratios (HR)=2.142, 95% confidence interval (CI): 1.523-3.012], IM therapy (P=0.001, HR=2.175, 95% CI: 1.369-3.456), baseline GC dose ⩽7.5 mg (P=0.003, HR=1.637, 95% CI: 1.177-2.275), and absence of non-steroidal anti-inflammatory drugs use (P=0.001, HR=2.546, 95% CI: 1.432-4.527) as significant predictors of GC discontinuation. Sensitivity analysis (545 cases) confirmed these findings.
CONCLUSIONS
RA patients receiving CM face difficulties in following guideline-recommended GC discontinuation protocols. IM can promote GC discontinuation and is a promising strategy to reduce GC dependency in RA management. (Trial registration: ClinicalTrials.gov, No. NCT05219214).
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Arthritis, Rheumatoid/drug therapy*
;
Glucocorticoids/therapeutic use*
;
Medicine, Chinese Traditional
;
Retrospective Studies
6.Pharmacokinetics of JS026 and JS026-JS016 for single intravenous administration in healthy volunteers
Yan TIAN ; Hui-Jing YE ; Jing-Jing WANG ; Nan-Yang LI ; Juan MA ; Xi TAN ; Fan WU ; Jie WANG ; Shu-Yan YU ; Xiao-Jie WU ; Jin-Jie HE ; Jing ZHANG ; Wen-Hong ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(15):2251-2255
Objective To evaluate tolerability,safety and pharmacokinetics of JS026 and JS026-JS016 single dose intravenous infusion in healthy adults.Methods This phase 1,randomized,double-blind,placebo-controlled,dose-escalation study totally included 48 participants:32 healthy subjects were enrolled in JS026 single intravenous infusion groups and 16 healthy subjects were enrolled in JS026-JS016 groups.JS026 was sequentially administered from low dose to high dose(30-1 000 mg),with intravenous infusion of JS026 or placebo in JS026 single-dose groups,and intravenous infusion of JS026-JS016 or placebo in the combination drug groups.Blood was collected according to the time point designed for trial.Serum concentrations of JS026 and JS016 were determined by enzyme linked immunosorbnent assay(ELISA),and pharmacokinetics parameters were calculated by WinNonlin 8.2.The power model method was used to evaluate the linear analysis of dose and drug exposure.Results 47 subjects completed trial and 1 subject lost to follow-up.After a single intravenous injection of JS026 of 30 mg,100 mg,300 mg,600 mg,and 1 000 mg,mean Cmax were(9.47±1.53),(33.20±4.95),(96.10±13.70),(177.00±22.20)and(353.00±56.70)μg·mL-1,respectively;mean AUC0-∞ were(4 225.00±607.00),(1.78 × 104±3 268.00),(5.83 × 104±1 038.00),(1.07 × 105±152.00),(1.66 × 105±327.00)μg·h·mL-1,respectively;mean t1/2 of JS026 were 563-709 h.The Cmax and AUC0-∞ of JS026 were basically similar alone or in combination with JS016.The results of Power model showed that Cmax and AUC0-∞ increased approximately linearly with the increasing dose of JS026.Treatment emergent adverse event was not increasing when dose increased and most of adverse event associated with drugs were abnormal on laboratory tests and haematuria,thus JS026 and JS016 was well tolerated in all groups.Conclusion The single intravenous infusion of JS026 can almost be thought to be a linear relationship between the doses and drug serum exposure.JS016 had no significant effect on serum concentration of JS026 and JS026 was well tolerated and safe in healthy subjects within 30-1 000 mg.
7.Exploration on bioactive equivalent combinatorial components of Xiaoke formula and its mechanism based on insulin resistance mice
Jian ZHANG ; Wen-juan MA ; Lin-jie DONG ; Jiang-lan LONG ; Yu ZHANG ; Dan YAN
Acta Pharmaceutica Sinica 2024;59(6):1698-1705
Xiaoke formula (XKF) is a classic formula for the treatment of insulin resistance (IR), but there is still unclear on bioactive equivalent combinatorial components (BECC) of XKF. In this study, based on the previous research of our team, three components, berberine, astragaloside IV and chlorogenic acid, were selected as the BECC of XKF, and their efficacy and mechanism were investigated. A high-fat diet-induced IR mouse model was used to detect blood glucose, insulin sensitivity, lipid metabolism, immune & inflammatory factors, etc., and staining of pathology sections was used to detect histopathological changes. Network pharmacology was used to predict the potential targets and signaling pathways of XKF and its BECC, and the results of the network were verified by Western blot. The animal welfare and experimental procedures followed the regulations of the Laboratory Animal Ethics Committee of Beijing MDKN Biotech Company (MDKN-2023-019). The results showed that BECC, which was composed of berberine, astragaloside IV and chlorogenic acid in the ratio of the original formula of XKF, was comparable to XKF in improving the glycemia, insulin sensitivity, histopathological damage, dyslipidemia, and immuno-inflammation in IR mice. The results of network pharmacology and Western blot suggested that the BECC of XKF and XKF might alleviate IR by promoting the activation of hepatic phosphatidylinositol 3-kinase (PI3K), phosphorylation of protein kinase B (AKT), and inhibiting the expression of glucose-6-phosphate phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1), the key limiting enzymes of hepatic gluconeogenesis. The above results suggest that berberine, astragaloside IV and chlorogenic acid can be used as the potential BECC of XKF to improve IR, and can regulate lipid metabolism, immuno-inflammation, and promote hepatic PI3K/AKT signaling to inhibit hepatic gluconeogenesis, regulate glucose homeostasis, and improve IR in mice.
8.The taste correction process of ibuprofen oral solution based on the combination of electronic tongue technology and artificial taste comprehensive evaluation
Rui YUAN ; Yun-ping QU ; Yan WANG ; Ya-xuan ZHANG ; Wan-ling ZHONG ; Xiao-yu FAN ; Hui-juan SHEN ; Yun-nan MA ; Jin-hong YE ; Jie BAI ; Shou-ying DU
Acta Pharmaceutica Sinica 2024;59(8):2404-2411
This experiment aims to study the taste-masking effects of different kinds of corrigent used individually and in combination on ibuprofen oral solution, in order to optimize the taste-masking formulation. Firstly, a wide range of corrigent and the mass fractions were extensively screened using electronic tongue technology. Subsequently, a combination of sensory evaluation, analytic hierarchy process (AHP)-fuzzy mathematics evaluation, and Box-Behnken experimental design were employed to comprehensively assess the taste-masking effects of different combinations of corrigent on ibuprofen oral solution, optimize the taste-masking formulation, and validate the results. The study received ethical approval from the Review Committee of the Beijing University of Chinese Medicine (ethical code: 2024BZYLL0102). The results showed that corrigent fractions and types were screened separately through single-factor experiments. Subsequently, a Box-Behnken response surface design combined with AHP and fuzzy mathematics evaluation was used to fit a functional model:
9.Application and Challenges of EEG Signals in Fatigue Driving Detection
Shao-Jie ZONG ; Fang DONG ; Yong-Xin CHENG ; Da-Hua YU ; Kai YUAN ; Juan WANG ; Yu-Xin MA ; Fei ZHANG
Progress in Biochemistry and Biophysics 2024;51(7):1645-1669
People frequently struggle to juggle their work, family, and social life in today’s fast-paced environment, which can leave them exhausted and worn out. The development of technologies for detecting fatigue while driving is an important field of research since driving when fatigued poses concerns to road safety. In order to throw light on the most recent advancements in this field of research, this paper provides an extensive review of fatigue driving detection approaches based on electroencephalography (EEG) data. The process of fatigue driving detection based on EEG signals encompasses signal acquisition, preprocessing, feature extraction, and classification. Each step plays a crucial role in accurately identifying driver fatigue. In this review, we delve into the signal acquisition techniques, including the use of portable EEG devices worn on the scalp that capture brain signals in real-time. Preprocessing techniques, such as artifact removal, filtering, and segmentation, are explored to ensure that the extracted EEG signals are of high quality and suitable for subsequent analysis. A crucial stage in the fatigue driving detection process is feature extraction, which entails taking pertinent data out of the EEG signals and using it to distinguish between tired and non-fatigued states. We give a thorough rundown of several feature extraction techniques, such as topology features, frequency-domain analysis, and time-domain analysis. Techniques for frequency-domain analysis, such wavelet transform and power spectral density, allow the identification of particular frequency bands linked to weariness. Temporal patterns in the EEG signals are captured by time-domain features such autoregressive modeling and statistical moments. Furthermore, topological characteristics like brain area connection and synchronization provide light on how the brain’s functional network alters with weariness. Furthermore, the review includes an analysis of different classifiers used in fatigue driving detection, such as support vector machine (SVM), artificial neural network (ANN), and Bayesian classifier. We discuss the advantages and limitations of each classifier, along with their applications in EEG-based fatigue driving detection. Evaluation metrics and performance assessment are crucial aspects of any detection system. We discuss the commonly used evaluation criteria, including accuracy, sensitivity, specificity, and receiver operating characteristic (ROC) curves. Comparative analyses of existing models are conducted, highlighting their strengths and weaknesses. Additionally, we emphasize the need for a standardized data marking protocol and an increased number of test subjects to enhance the robustness and generalizability of fatigue driving detection models. The review also discusses the challenges and potential solutions in EEG-based fatigue driving detection. These challenges include variability in EEG signals across individuals, environmental factors, and the influence of different driving scenarios. To address these challenges, we propose solutions such as personalized models, multi-modal data fusion, and real-time implementation strategies. In conclusion, this comprehensive review provides an extensive overview of the current state of fatigue driving detection based on EEG signals. It covers various aspects, including signal acquisition, preprocessing, feature extraction, classification, performance evaluation, and challenges. The review aims to serve as a valuable resource for researchers, engineers, and practitioners in the field of driving safety, facilitating further advancements in fatigue detection technologies and ultimately enhancing road safety.
10.Protective effect and mechanism of acellular nerve allografts combined with electroacupuncture on spinal ganglia in rats with sciatic nerve injury
Ze-Yu ZHOU ; Yun-Han MA ; Jia-Rui LI ; Yu-Meng HU ; Bo YUAN ; Yin-Juan ZHANG ; Xiao-Min YU ; Xiu-Mei FU
Acta Anatomica Sinica 2024;55(2):143-149
Objective To investigate the protective effect and mechanism of acellular nerve allografts(ANA)combined with electroacupuncture on spinal ganglia in rats with sciatic nerve injury(SNI).Methods Totally 50 male adult SD rats were randomly selected for this experiment.Ten rats were prepared for the ANA.Forty male SD rats were randomly divided into normal group,model group,ANA group and combinational group,with 10 rats in each group.The SNI model was established by cutting off the nerves 10 mm at the 5 mm on the inferior border of piriformis after separating the right sciatic nerves.The rats in the ANA group were bridged with ANA to the two broken ends of injured nerves.The rats in the combinational group were treated with electroacupuncture 2 days after ANA bridging,Huantiao(GB30)and Yanglingquan(GB34)were performed as the acupuncture points,each electroacupuncture lasted 15 minutes and 7 days as a course of treatment,4 courses in all.Sciatic nerve conduction velocity was measured by electrophysiology to evaluate the regeneration of damaged axons.Morphology of spinal ganglia was observed by Nissl staining.The expression of nerve growth factor(NGF)and brain-derived neurotrophic factor(BDNF)were detected by Western blotting and immunofluorescent staining.Results Compared with the normal group,the sciatic nerve conduction velocity in model group decreased significantly(P<0.01),Nissl bodies in neurons of spinal ganglia were swollen and dissolved,with incomplete structure and the number decreased dramatically(P<0.01),while the level of NGF and BDNF also decreased significantly(P<0.01).Compared with the model group,the sciatic nerve conduction velocity in ANA and combinational groups strongly increased(P<0.01),the damage of Nissl bodies in neurons of spinal ganglia reduced and the number obviously increased(P<0.01),the level of NGF and BDNF increased considerably(P<0.01).Compared with the ANA group,the sciatic nerve conduction velocity in combinational group increased significantly(P<0.01),the morphology of Nissl bodies in neurons of spinal ganglia were more regular and the number increased(P<0.01),moreover,the level of NGF also increased significantly(P<0.01).Conclusion ANA combined with electroacupuncture can enhance the sciatic nerve conduction velocity,improve the morphology of neurons in spinal ganglia and play a protective effect on spinal ganglia.The mechanism can be related to the higher expression of NGF and BDNF proteins,especially the expression of NGF protein.

Result Analysis
Print
Save
E-mail