1.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
2.Identification of novel pathogenic variants in genes related to pancreatic β cell function: A multi-center study in Chinese with young-onset diabetes.
Fan YU ; Yinfang TU ; Yanfang ZHANG ; Tianwei GU ; Haoyong YU ; Xiangyu MENG ; Si CHEN ; Fengjing LIU ; Ke HUANG ; Tianhao BA ; Siqian GONG ; Danfeng PENG ; Dandan YAN ; Xiangnan FANG ; Tongyu WANG ; Yang HUA ; Xianghui CHEN ; Hongli CHEN ; Jie XU ; Rong ZHANG ; Linong JI ; Yan BI ; Xueyao HAN ; Hong ZHANG ; Cheng HU
Chinese Medical Journal 2025;138(9):1129-1131
3.IsoVISoR: Towards 3D Mesoscale Brain Mapping of Large Mammals at Isotropic Sub-micron Resolution.
Chao-Yu YANG ; Yan SHEN ; Xiaoyang QI ; Lufeng DING ; Yanyang XIAO ; Qingyuan ZHU ; Hao WANG ; Cheng XU ; Pak-Ming LAU ; Pengcheng ZHOU ; Fang XU ; Guo-Qiang BI
Neuroscience Bulletin 2025;41(2):344-348
4.Single-Neuron Reconstruction of the Macaque Primary Motor Cortex Reveals the Diversity of Neuronal Morphology.
Siyu LI ; Yan SHEN ; Yefei CHEN ; Zexuan HONG ; Lewei ZHANG ; Lufeng DING ; Chao-Yu YANG ; Xiaoyang QI ; Quqing SHEN ; Yanyang XIAO ; Pak-Ming LAU ; Zhonghua LU ; Fang XU ; Guo-Qiang BI
Neuroscience Bulletin 2025;41(3):525-530
5.Langerhans Cell Histiocytosis of Bone:Report of Eight Cases and Review of the Literature.
Ya BI ; Dan-Dan WU ; Fang-Ying YU ; Zhen-Hong FANG ; Bo HUANG
Acta Academiae Medicinae Sinicae 2025;47(2):325-332
Langerhans cell histiocytosis of bone is a rare tumor disease characterized by the large accumulation of CD1a+ and CD207+ dendritic cells in tissues of unknown cause.It mainly occurs in children aged 1-4 years old,with incidences of 4-6 per million in children and 1-2 per million in adults.Due to its low incidence,diverse clinical manifestations,and no obvious specificity of imaging manifestations,the definitive diagnosis and early treatment of this type of tumor are challenging.In this paper,we report 8 cases of Langerhans cell histiocytosis of bone and review the relevant literature published in the past five years to summarize the clinical characteristics,pathological features,diagnosis,treatment,and prognosis of this disease.
Humans
;
Bone Diseases/therapy*
;
Histiocytosis, Langerhans-Cell/therapy*
6.Construction of postoperative prognostic model for primary liver cancer based on SMOTE and machine learning
Bi PAN ; Jinghua YU ; Yixian HUANG ; Yazhou WU ; Fang LI
Journal of Army Medical University 2024;46(19):2236-2240
Objective To construct a prognosis prediction model of primary liver cancer after surgical treatment based on synthetic minority over-sampling technique(SMOTE)algorithm and machine learning model.Methods A retrospective cohort study was conducted on 4 297 patients with primary liver cancer from the surveillance,epidemiology,and end results(SEER)database.One-Hot Encoding and Multiple Imputation were used to preprocess the collect data,and SMOTE algorithm was employed to solve the imbalance of data categories.The obtained clinical variables were included in the machine learning model.Based on decision tree(DT),random forest(RF),gradient boosting decision tree(GBDT)and eXtreme Gradient Boosting(XGBoost),a prognostic prediction model(SMOTE+DT/RF/GBDT/XGBoost)was build,and then the best prediction model was determined by comparing the performance of various models.Finally,a prognostic analysis system for primary liver cancer was developed based on the optimal model,which was then visualized.Results The combination model SMOTE+RF showed the best predictive performance,with higher area under the curve(0.895),accuracy(0.811)and precision(0.806)than those of other models in receiver operating characteristic curve(ROC)analysis.Conclusion The SMOTE+RF prognostic prediction model can effectively predict the survival outcome of patients with primary liver cancer.
8. Supervillin Isoform 4 (SV4) Regulates Mitosis by Enhancing Aurora A Activity
Wen-Xu BI ; Si-Yu ZHANG ; Shu-Yang LI ; Wei WANG ; Xue-Ran CHEN ; Zhi-You FANG ; Wen-Xu BI ; Si-Yu ZHANG ; Xue-Ran CHEN ; Zhi-You FANG
Chinese Journal of Biochemistry and Molecular Biology 2023;39(11):1588-1597
Mitosis is important for cell proliferation in eukaryotes, and chromosome replication and accurate separation are essential for cell division. Supervillin is a membrane and microfilament actin binding protein. Previous studies have found that it regulates the dynamic changes of the cortical distribution of F-actin and myosin II in cytokinesis, thus ensuring the correct distribution of the contraction ring and participating in the final completion of cytoplasm divisions. But it is not clear whether it functions during metaphase. Supervillin has several splicing isomers, among which supervillin isoform 4 (SV4) is the largest splicing isomer. In this study, the expression of SV4 in cells was reduced by the RNA interference method, and the dynamic process of mitosis and the morphology of astral spindles were detected and observed by real-time microscopy and immunofluorescence staining, and the potential molecular mechanism of SV4 in mitosis was analyzed. The results showed abnormal cell divisions after SV4 reduction: delayed transition from metaphase to anaphase (P<0.001), abnormal assembly of microtubules, a twofold-increase of the number of cells with multipolar spindles, and decreased γ-tubulin signaling in the centrosome (P<0.001). Through GST pull-down and mass spectrometry experiments, we found that SV4 and Aurora A bind to each other, and SV4 regulates the localization and activation of Aurora A in the centrosome during mitosis. In summary, supervillin plays an important role in mitosis. The isomer SV4 regulates spindle integrity and γ-tubulin recruitment by interacting with Aurora A and recruiting it for proper localization and activation in the centrosome during the metaphase, thus promoting the correct assembly of bipolar spindles and ensuring the accurate separation of chromosomes and the smooth progress of mitosis.
9.Risk factors for neonatal asphyxia and establishment of a nomogram model for predicting neonatal asphyxia in Hubei Enshi Tujia and Miao Autonomous Prefecture: a multicenter study.
Fang JIN ; Yu CHEN ; Yi-Xun LIU ; Su-Ying WU ; Chao-Ce FANG ; Yong-Fang ZHANG ; Lu ZHENG ; Li-Fang ZHANG ; Xiao-Dong SONG ; Hong XIA ; Er-Ming CHEN ; Xiao-Qin RAO ; Guang-Quan CHEN ; Qiong YI ; Yan HU ; Lang JIANG ; Jing LI ; Qing-Wei PANG ; Chong YOU ; Bi-Xia CHENG ; Zhang-Hua TAN ; Ya-Juan TAN ; Ding ZHANG ; Tie-Sheng YU ; Jian RAO ; Yi-Dan LIANG ; Shi-Wen XIA
Chinese Journal of Contemporary Pediatrics 2023;25(7):697-704
OBJECTIVES:
To investigate the risk factors for neonatal asphyxia in Hubei Enshi Tujia and Miao Autonomous Prefecture and establish a nomogram model for predicting the risk of neonatal asphyxia.
METHODS:
A retrospective study was conducted with 613 cases of neonatal asphyxia treated in 20 cooperative hospitals in Enshi Tujia and Miao Autonomous Prefecture from January to December 2019 as the asphyxia group, and 988 randomly selected non-asphyxia neonates born and admitted to the neonatology department of these hospitals during the same period as the control group. Univariate and multivariate analyses were used to identify risk factors for neonatal asphyxia. R software (4.2.2) was used to establish a nomogram model. Receiver operator characteristic curve, calibration curve, and decision curve analysis were used to assess the discrimination, calibration, and clinical usefulness of the model for predicting the risk of neonatal asphyxia, respectively.
RESULTS:
Multivariate logistic regression analysis showed that minority (Tujia), male sex, premature birth, congenital malformations, abnormal fetal position, intrauterine distress, maternal occupation as a farmer, education level below high school, fewer than 9 prenatal check-ups, threatened abortion, abnormal umbilical cord, abnormal amniotic fluid, placenta previa, abruptio placentae, emergency caesarean section, and assisted delivery were independent risk factors for neonatal asphyxia (P<0.05). The area under the curve of the model for predicting the risk of neonatal asphyxia based on these risk factors was 0.748 (95%CI: 0.723-0.772). The calibration curve indicated high accuracy of the model for predicting the risk of neonatal asphyxia. The decision curve analysis showed that the model could provide a higher net benefit for neonates at risk of asphyxia.
CONCLUSIONS
The risk factors for neonatal asphyxia in Hubei Enshi Tujia and Miao Autonomous Prefecture are multifactorial, and the nomogram model based on these factors has good value in predicting the risk of neonatal asphyxia, which can help clinicians identify neonates at high risk of asphyxia early, and reduce the incidence of neonatal asphyxia.
Infant, Newborn
;
Humans
;
Male
;
Pregnancy
;
Female
;
Nomograms
;
Retrospective Studies
;
Cesarean Section
;
Risk Factors
;
Asphyxia Neonatorum/etiology*
10.A multicenter epidemiological study of acute bacterial meningitis in children.
Cai Yun WANG ; Hong Mei XU ; Jiao TIAN ; Si Qi HONG ; Gang LIU ; Si Xuan WANG ; Feng GAO ; Jing LIU ; Fu Rong LIU ; Hui YU ; Xia WU ; Bi Quan CHEN ; Fang Fang SHEN ; Guo ZHENG ; Jie YU ; Min SHU ; Lu LIU ; Li Jun DU ; Pei LI ; Zhi Wei XU ; Meng Quan ZHU ; Li Su HUANG ; He Yu HUANG ; Hai Bo LI ; Yuan Yuan HUANG ; Dong WANG ; Fang WU ; Song Ting BAI ; Jing Jing TANG ; Qing Wen SHAN ; Lian Cheng LAN ; Chun Hui ZHU ; Yan XIONG ; Jian Mei TIAN ; Jia Hui WU ; Jian Hua HAO ; Hui Ya ZHAO ; Ai Wei LIN ; Shuang Shuang SONG ; Dao Jiong LIN ; Qiong Hua ZHOU ; Yu Ping GUO ; Jin Zhun WU ; Xiao Qing YANG ; Xin Hua ZHANG ; Ying GUO ; Qing CAO ; Li Juan LUO ; Zhong Bin TAO ; Wen Kai YANG ; Yong Kang ZHOU ; Yuan CHEN ; Li Jie FENG ; Guo Long ZHU ; Yan Hong ZHANG ; Ping XUE ; Xiao Qin LI ; Zheng Zhen TANG ; De Hui ZHANG ; Xue Wen SU ; Zheng Hai QU ; Ying ZHANG ; Shi Yong ZHAO ; Zheng Hong QI ; Lin PANG ; Cai Ying WANG ; Hui Ling DENG ; Xing Lou LIU ; Ying Hu CHEN ; Sainan SHU
Chinese Journal of Pediatrics 2022;60(10):1045-1053
Objective: To analyze the clinical epidemiological characteristics including composition of pathogens , clinical characteristics, and disease prognosis acute bacterial meningitis (ABM) in Chinese children. Methods: A retrospective analysis was performed on the clinical and laboratory data of 1 610 children <15 years of age with ABM in 33 tertiary hospitals in China from January 2019 to December 2020. Patients were divided into different groups according to age,<28 days group, 28 days to <3 months group, 3 months to <1 year group, 1-<5 years of age group, 5-<15 years of age group; etiology confirmed group and clinically diagnosed group according to etiology diagnosis. Non-numeric variables were analyzed with the Chi-square test or Fisher's exact test, while non-normal distrituction numeric variables were compared with nonparametric test. Results: Among 1 610 children with ABM, 955 were male and 650 were female (5 cases were not provided with gender information), and the age of onset was 1.5 (0.5, 5.5) months. There were 588 cases age from <28 days, 462 cases age from 28 days to <3 months, 302 cases age from 3 months to <1 year of age group, 156 cases in the 1-<5 years of age and 101 cases in the 5-<15 years of age. The detection rates were 38.8% (95/245) and 31.5% (70/222) of Escherichia coli and 27.8% (68/245) and 35.1% (78/222) of Streptococcus agalactiae in infants younger than 28 days of age and 28 days to 3 months of age; the detection rates of Streptococcus pneumonia, Escherichia coli, and Streptococcus agalactiae were 34.3% (61/178), 14.0% (25/178) and 13.5% (24/178) in the 3 months of age to <1 year of age group; the dominant pathogens were Streptococcus pneumoniae and the detection rate were 67.9% (74/109) and 44.4% (16/36) in the 1-<5 years of age and 5-<15 years of age . There were 9.7% (19/195) strains of Escherichia coli producing ultra-broad-spectrum β-lactamases. The positive rates of cerebrospinal fluid (CSF) culture and blood culture were 32.2% (515/1 598) and 25.0% (400/1 598), while 38.2% (126/330)and 25.3% (21/83) in CSF metagenomics next generation sequencing and Streptococcus pneumoniae antigen detection. There were 4.3% (32/790) cases of which CSF white blood cell counts were normal in etiology confirmed group. Among 1 610 children with ABM, main intracranial imaging complications were subdural effusion and (or) empyema in 349 cases (21.7%), hydrocephalus in 233 cases (14.5%), brain abscess in 178 cases (11.1%), and other cerebrovascular diseases, including encephalomalacia, cerebral infarction, and encephalatrophy, in 174 cases (10.8%). Among the 166 cases (10.3%) with unfavorable outcome, 32 cases (2.0%) died among whom 24 cases died before 1 year of age, and 37 cases (2.3%) had recurrence among whom 25 cases had recurrence within 3 weeks. The incidences of subdural effusion and (or) empyema, brain abscess and ependymitis in the etiology confirmed group were significantly higher than those in the clinically diagnosed group (26.2% (207/790) vs. 17.3% (142/820), 13.0% (103/790) vs. 9.1% (75/820), 4.6% (36/790) vs. 2.7% (22/820), χ2=18.71, 6.20, 4.07, all P<0.05), but there was no significant difference in the unfavorable outcomes, mortility, and recurrence between these 2 groups (all P>0.05). Conclusions: The onset age of ABM in children is usually within 1 year of age, especially <3 months. The common pathogens in infants <3 months of age are Escherichia coli and Streptococcus agalactiae, and the dominant pathogen in infant ≥3 months is Streptococcus pneumoniae. Subdural effusion and (or) empyema and hydrocephalus are common complications. ABM should not be excluded even if CSF white blood cell counts is within normal range. Standardized bacteriological examination should be paid more attention to increase the pathogenic detection rate. Non-culture CSF detection methods may facilitate the pathogenic diagnosis.
Adolescent
;
Brain Abscess
;
Child
;
Child, Preschool
;
Escherichia coli
;
Female
;
Humans
;
Hydrocephalus
;
Infant
;
Infant, Newborn
;
Male
;
Meningitis, Bacterial/epidemiology*
;
Retrospective Studies
;
Streptococcus agalactiae
;
Streptococcus pneumoniae
;
Subdural Effusion
;
beta-Lactamases

Result Analysis
Print
Save
E-mail