1.Repetitive trans-spinal magnetic stimulation promotes motor function recovery in mice after spinal cord injury
Haiwang SONG ; Guanhua JIANG ; Yingying MU ; Shanyu FU ; Baofei SUN ; Yumei LI ; Zijiang YU ; Dan YANG
Chinese Journal of Tissue Engineering Research 2025;29(11):2252-2260
BACKGROUND:Repetitive trans-spinal magnetic stimulation(rTSMS)can inhibit inflammatory responses following spinal cord injury.rTSMS applies magnetic field stimulation to the spinal cord region to modulate neuronal excitability and synaptic transmission,thereby promoting plasticity and repair of the nervous system. OBJECTIVE:To observe the effects of rTSMS on the Toll-like receptor 4(TLR4)/nuclear factor(NF)-κB/NLRP3 signaling pathway after spinal cord injury and explore its mechanism in promoting motor function recovery. METHODS:Male C57BL/6J mice,SPF grade,were randomly divided into sham surgery group,spinal cord injury group,and rTSMS group.The latter two groups of mice were anesthetized and the T9 vertebral plate was removed using rongeur forceps to expose the spinal cord,and the spinal cord was clamped using a small aneurysm clip for 20 seconds to establish the spinal cord injury model.Mice in the rTSMS group underwent a 21-day rTSMS intervention starting on day 1 after spinal cord injury.The stimulation lasted 10 minutes per day,5 days per week with an interval of 2 days.Basso Mouse Scale scores were used to assess motor function recovery in mice after spinal cord injury at 1,3,7,14,and 21 days after spinal cord injury.Western blot was employed to detect the expression of AQP4,apoptotic factors Bax,Bcl-2,CL-Caspase-3,inflammatory factors tumor necrosis factor-α,interferon-γ,interleukin-6,interleukin-4,and the TLR4/NF-κB/NLRP3 signaling pathway related proteins in the injured spinal cord.Oxidative stress assay kit was used to measure the activity of superoxide dismutase,glutathione peroxidase,and malondialdehyde content at the site of spinal cord injury.Immunofluorescence staining was performed to detect the expression of neuronal nuclei(NeuN). RESULTS AND CONCLUSION:The Basso Mouse Scale score in the rTSMS group was significantly higher than that in the spinal cord injury group(P<0.05).Compared with the spinal cord injury group,the rTSMS group showed a reduction in spinal cord water content.The expression of AQP4 protein,malondialdehyde content,and expression of Bax,Bcl-2,CL-Caspase-3,tumor necrosis factor-α,interferon-γ,interleukin-6,and TLR4/NF-κB/NLRP3 signaling pathway related proteins were all decreased in the rTSMS group,while the activities of superoxide dismutase and glutathione peroxidase,as well as the expression of Bcl-2,interleukin-4,and NeuN,were all increased(P<0.05).These results suggest that rTSMS downregulates the expression of proteins related to the TLR4/NF-κB/NLRP3 signaling pathway,alleviating symptoms after spinal cord injury such as spinal cord edema,oxidative stress,apoptosis,and inflammation,exerting neuroprotective effects,and thereby promoting the recovery of hindlimb motor function after spinal cord injury.
2.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
3.Pharmacological actions of the bioactive compounds of Epimedium on the male reproductive system: current status and future perspective.
Song-Po LIU ; Yun-Fei LI ; Dan ZHANG ; Chun-Yang LI ; Xiao-Fang DAI ; Dong-Feng LAN ; Ji CAI ; He ZHOU ; Tao SONG ; Yan-Yu ZHAO ; Zhi-Xu HE ; Jun TAN ; Ji-Dong ZHANG
Asian Journal of Andrology 2025;27(1):20-29
Compounds isolated from Epimedium include the total flavonoids of Epimedium , icariin, and its metabolites (icaritin, icariside I, and icariside II), which have similar molecular structures. Modern pharmacological research and clinical practice have proved that Epimedium and its active components have a wide range of pharmacological effects, especially in improving sexual function, hormone regulation, anti-osteoporosis, immune function regulation, anti-oxidation, and anti-tumor activity. To date, we still need a comprehensive source of knowledge about the pharmacological effects of Epimedium and its bioactive compounds on the male reproductive system. However, their actions in other tissues have been reviewed in recent years. This review critically focuses on the Epimedium , its bioactive compounds, and the biochemical and molecular mechanisms that modulate vital pathways associated with the male reproductive system. Such intrinsic knowledge will significantly further studies on the Epimedium and its bioactive compounds that protect the male reproductive system and provide some guidances for clinical treatment of related male reproductive disorders.
Male
;
Epimedium/chemistry*
;
Humans
;
Genitalia, Male/drug effects*
;
Flavonoids/therapeutic use*
;
Animals
4.The systemic inflammatory response index as a risk factor for all-cause and cardiovascular mortality among individuals with coronary artery disease: evidence from the cohort study of NHANES 1999-2018.
Dao-Shen LIU ; Dan LIU ; Hai-Xu SONG ; Jing LI ; Miao-Han QIU ; Chao-Qun MA ; Xue-Fei MU ; Shang-Xun ZHOU ; Yi-Xuan DUAN ; Yu-Ying LI ; Yi LI ; Ya-Ling HAN
Journal of Geriatric Cardiology 2025;22(7):668-677
BACKGROUND:
The association of systemic inflammatory response index (SIRI) with prognosis of coronary artery disease (CAD) patients has never been investigated in a large sample with long-term follow-up. This study aimed to explore the association of SIRI with all-cause and cause-specific mortality in a nationally representative sample of CAD patients from United States.
METHODS:
A total of 3386 participants with CAD from the National Health and Nutrition Examination Survey (NHANES) 1999-2018 were included in this study. Cox proportional hazards model, restricted cubic spline (RCS), and receiver operating characteristic curve (ROC) were performed to investigate the association of SIRI with all-cause and cause-specific mortality. Piece-wise linear regression and sensitivity analyses were also performed.
RESULTS:
During a median follow-up of 7.7 years, 1454 all-cause mortality occurred. After adjusting for confounding factors, higher lnSIRI was significantly associated with higher risk of all-cause (HR = 1.16, 95% CI: 1.09-1.23) and CVD mortality (HR = 1.17, 95% CI: 1.05-1.30) but not cancer mortality (HR = 1.17, 95% CI: 0.99-1.38). The associations of SIRI with all-cause and CVD mortality were detected as J-shaped with threshold values of 1.05935 and 1.122946 for SIRI, respectively. ROC curves showed that lnSIRI had robust predictive effect both in short and long terms.
CONCLUSIONS
SIRI was independently associated with all-cause and CVD mortality, and the dose-response relationship was J-shaped. SIRI might serve as a valid predictor for all-cause and CVD mortality both in the short and long terms.
5.The application of surgical robots in head and neck tumors.
Xiaoming HUANG ; Qingqing HE ; Dan WANG ; Jiqi YAN ; Yu WANG ; Xuekui LIU ; Chuanming ZHENG ; Yan XU ; Yanxia BAI ; Chao LI ; Ronghao SUN ; Xudong WANG ; Mingliang XIANG ; Yan WANG ; Xiang LU ; Lei TAO ; Ming SONG ; Qinlong LIANG ; Xiaomeng ZHANG ; Yuan HU ; Renhui CHEN ; Zhaohui LIU ; Faya LIANG ; Ping HAN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(11):1001-1008
6.Transcranial temporal interference stimulation precisely targets deep brain regions to regulate eye movements.
Mo WANG ; Sixian SONG ; Dan LI ; Guangchao ZHAO ; Yu LUO ; Yi TIAN ; Jiajia ZHANG ; Quanying LIU ; Pengfei WEI
Neuroscience Bulletin 2025;41(8):1390-1402
Transcranial temporal interference stimulation (tTIS) is a novel non-invasive neuromodulation technique with the potential to precisely target deep brain structures. This study explores the neural and behavioral effects of tTIS on the superior colliculus (SC), a region involved in eye movement control, in mice. Computational modeling revealed that tTIS delivers more focused stimulation to the SC than traditional transcranial alternating current stimulation. In vivo experiments, including Ca2+ signal recordings and eye movement tracking, showed that tTIS effectively modulates SC neural activity and induces eye movements. A significant correlation was found between stimulation frequency and saccade frequency, suggesting direct tTIS-induced modulation of SC activity. These results demonstrate the precision of tTIS in targeting deep brain regions and regulating eye movements, highlighting its potential for neuroscientific research and therapeutic applications.
Animals
;
Superior Colliculi/physiology*
;
Transcranial Direct Current Stimulation/methods*
;
Eye Movements/physiology*
;
Male
;
Mice
;
Mice, Inbred C57BL
7.Microbiome, metabolome, and transcriptome analyses in esophageal squamous cell carcinoma: insights into immune modulation by F. nucleatum.
Xue ZHANG ; Jing HAN ; Yudong WANG ; Li FENG ; Zhisong FAN ; Yu SU ; Wenya SONG ; Lan WANG ; Long WANG ; Hui JIN ; Jiayin LIU ; Dan LI ; Guiying LI ; Yan LIU ; Jing ZUO ; Zhiyu NI
Protein & Cell 2025;16(6):491-496
8.Development of a High-throughput Sequencing Platform for Detection of Viral Encephalitis Pathogens Based on Amplicon Sequencing
Li Ya ZHANG ; Zhe Wen SU ; Chen Rui WANG ; Yan LI ; Feng Jun ZHANG ; Hui Sheng LIU ; He Dan HU ; Xiao Chong XU ; Yu Jia YIN ; Kai Qi YIN ; Ying HE ; Fan LI ; Hong Shi FU ; Kai NIE ; Dong Guo LIANG ; Yong TAO ; Tao Song XU ; Feng Chao MA ; Yu Huan WANG
Biomedical and Environmental Sciences 2024;37(3):294-302
Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing. Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing. Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing. Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.
9.Progress of circulating tumor DNA methylation for gastric cancer screening and management
Qinxing CAO ; Li YAN ; Nengyi HOU ; Jinfeng CHEN ; Song YU ; Hejiang LU ; Zhenjia DAN ; Minghui PANG
Chinese Journal of Gastrointestinal Surgery 2024;27(5):535-544
Circulating tumor DNA (ctDNA) is cell-free DNA released by tumors or circulating tumor cells, containing abundant tumor-specific information that can serve as biomarkers for cancer early screening, monitoring, prognosis, and prediction of treatment response. This is particularly attractive in the field of gastric cancer, where high-quality screening, monitoring, and prediction methods are currently lacking. Gastric cancer exhibits significant tumor heterogeneity, with large differences in genetic and epigenetic characteristics among different subgroups. Methylated ctDNA has high sensitivity and specificity, which can help clarify tumor genotyping and facilitate the formulation of precise diagnostic and therapeutic strategies. Furthermore, numerous studies have confirmed the unique advantages of methylated DNA in predicting treatment response, adjuvant therapy, and drug resistance assessment, which may be used in the future to enhance the efficacy of chemotherapy regimens and improve patient chemotherapeutic response, and even treat multidrug resistance. However, there are several challenges associated with methylated ctDNA, such as low sensitivity and specificity at single-target sites, limited association between some gastric cancer subtypes and ctDNA, off-target risks, and the lack of large-scale and high-quality clinical research evidence. This review mainly summarizes current research on the methylation status of ctDNA in gastric cancer and connects these findings to early screening, recurrence monitoring, and potential treatment opportunities for gastric cancer. With advances in technology and the deepening of interdisciplinary research, ctDNA detection will reveal more disease information and become an essential foundation for gastric cancer research and precision medicine treatment.
10.Exploration of the Mechanism of Toddalia asiatica in the Treatment of Ischemic Stroke:Based on Network Pharmacology and Experimental Validation
Jian-Hong GAO ; Dan YANG ; Gang WANG ; Tian-Ying SONG ; Fang-Yu ZHAO ; Xian-Bing CHEN
Chinese Pharmacological Bulletin 2024;40(7):1375-1383
Aim This study aims to investigate the therapeutic effect and underlying mechanism of Todda-lia asiatica in the treatment of ischemic stroke(IS),utilizing network pharmacology,molecular docking technology,and animal experiments.Methods To screen the chemical components of Toddalia asiatica and its targets related to IS,a database was utilized.A protein-protein interaction(PPI)network was con-structed,followed by KEGG pathway enrichment anal-ysis.Molecular docking was performed to investigate the interaction between the components and target pro-teins.Finally,the effects of the drug on the PI3K/AKT/mTOR pathway and autophagy were validated through animal experiments.We established a middle cerebral artery occlusion(MCAO)rat model and di-vided the rats into the model group,Donepezil hydro-chloride group,Toddalia asiatica group,and sham op-eration group randomly.Observed the pathological changes in neurons of the rat hippocampal and cortical regions induced by the drug,performed immunohisto-chemical analysis to detect and localize mTOR expres-sion,and used Western blot to assess the expression levels of PI3K,p-PI3K,AKT,p-AKT,mTOR,as well as autophagy markers(LC3-Ⅱ and p62).Re-sults A total of 22 active ingredients from Toddalia asiatica,including AKT1 and MAPK3,were identified through screening.Additionally,194 signaling path-ways,such as PI3K/AKT and MAPK,were analyzed.The active compounds in Toddalia asiatica demonstra-ted stable binding affinity with targets associated with ischemic stroke.The results of the animal experiment indicated that,compared to the sham-operated group,the neuronal distribution in the hippocampal and corti-cal regions of the model group rats became sparser and more disorganized.There was a decrease in the number of Nissl bodies and cytoplasmic vacuolization.The ex-pression of mTOR-positive cells in the hippocampal and cortical regions was reduced.Additionally,the ex-pression levels of p-PI3K,p-AKT,mTOR,and p62 in the rat hippocampal tissue decreased(P<0.05,P<0.01),while the expression of LC3-Ⅱ increased(P<0.01).Compared with the model group,the rats in the Toddalia asiatica and the Donepezil hydrochloride groups effectively improved the aforementioned indica-tors in rats.Conclusions Network pharmacology a-nalysis has revealed the promising potential of Toddalia asiatica in treating ischemic stroke,attributed to its di-verse components,targets,and pathways.The animal experiment showed that Toddalia asiatica can protect the neuronal structure in the hippocampal and cortical regions,which may be related to the inhibition of ex-cessive autophagy mediated by the PI3 K/AKT/mTOR pathway.

Result Analysis
Print
Save
E-mail