1.Maillard Reaction in Processing of Traditional Chinese Medicine: A Review
Kai WANG ; Zhenni QU ; Yu BI ; Dianhua SHI ; Yanpeng DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):268-278
The Maillard reaction is a complex process in which amine compounds such as amino acids, peptides, and proteins undergo condensation, polymerization, and other reactions with carbonyl compounds such as reducing sugars, ketones, and aldehydes at room temperature or under heating conditions, ultimately producing substances such as melanoidins and aromatic compounds. The processing of traditional Chinese medicine(TCM) often involves heating and the addition of auxiliary materials, providing complete conditions for the occurrence of the Maillard reaction. The Maillard reaction is affected by various factors such as temperature, pH, moisture, substrate, reaction time and pressure, the progress of the reaction also affected by different processing technologies of TCM and the addition of different excipients. The Maillard reaction involves multiple substances, most of which have significant physiological activity or toxicity, affecting the efficacy and pharmacological effects of TCM. It can also produce various flavor substances and browning products that change the flavor and color of TCM. The Maillard reaction mechanism, influencing factors, related components, and the impact of Maillard reaction on various aspects of TCM processing are reviewed from multiple perspectives in this article, providing reference for the further improvement of processing mechanism and quality control of TCM.
2.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
3.Taste Receptors and Traditional Chinese Medicine Theory of Five Flavors: A Review
Xiaoxiao XU ; Hongjie BAI ; Yu BI ; Zhenni QU ; Dianhua SHI ; Yanpeng DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):322-330
Taste is a sensation produced by the reaction of substances in the mouth with taste receptor cells, and a normal taste function is essential for our daily life and health. As receivers of taste molecules, taste receptors include sour, bitter, sweet, salty, and umami receptors, which are mainly distributed in the oral cavity, gastrointestinal tract, respiratory tract epithelium and other organs and play a physiological role. Traditional Chinese medicine (TCM) has five flavors (sour, bitter, sweet, pungent, and salty), which are closely related to the efficacy. Except the pungent flavor and umami taste receptors, the other five taste receptors correspond to the five flavors in the TCM theory, while the correlations between them have not been studied, such as those between bitter receptors and bitter TCM and between sweet receptors and sweet TCM. This article reviews the research reports on taste receptors in recent years. By analyzing the relationships of taste receptors with five flavors of TCM, signaling mechanisms, and diseases based on "receptor-TCM" correlations, this article puts forward the possibility of combining the TCM theory of five flavors with modern biomedical research, providing a reference for the research on "flavors" in TCM and the correlations between TCM and taste receptors.
4.Taste Receptors and Traditional Chinese Medicine Theory of Five Flavors: A Review
Xiaoxiao XU ; Hongjie BAI ; Yu BI ; Zhenni QU ; Dianhua SHI ; Yanpeng DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):322-330
Taste is a sensation produced by the reaction of substances in the mouth with taste receptor cells, and a normal taste function is essential for our daily life and health. As receivers of taste molecules, taste receptors include sour, bitter, sweet, salty, and umami receptors, which are mainly distributed in the oral cavity, gastrointestinal tract, respiratory tract epithelium and other organs and play a physiological role. Traditional Chinese medicine (TCM) has five flavors (sour, bitter, sweet, pungent, and salty), which are closely related to the efficacy. Except the pungent flavor and umami taste receptors, the other five taste receptors correspond to the five flavors in the TCM theory, while the correlations between them have not been studied, such as those between bitter receptors and bitter TCM and between sweet receptors and sweet TCM. This article reviews the research reports on taste receptors in recent years. By analyzing the relationships of taste receptors with five flavors of TCM, signaling mechanisms, and diseases based on "receptor-TCM" correlations, this article puts forward the possibility of combining the TCM theory of five flavors with modern biomedical research, providing a reference for the research on "flavors" in TCM and the correlations between TCM and taste receptors.
5.Distribution of pupil diameter and its association with myopia in school age children
Chinese Journal of School Health 2025;46(8):1194-1197
Objective:
To investigate the distribution of pupil diameter and its association with myopia in school age children, providing ideas into the mechanisms of the role of pupil diameter in the onset and development of myopia.
Methods:
Adopting a combination of stratified cluster random sampling and convenience sampling method, 3 839 children from six schools in Shandong Province were included in September 2021. Pupil diameters distribution was analyzed by age, sex, and myopic status. Pearson correlation analysis was used to assess the relationship between pupil diameter and cycloplegic spherical equivalent (SE), as well as axial length (AL) and other variables. Propensity score matching (PSM) was applied to match myopic and non myopic children at a 1∶1 ratio based on age and sex. A generalized linear model (GLM) was constructed with pupil diameter as the dependent variable to identify independent factors influencing pupil size and its association with myopia.
Results:
The mean pupil diameter of school age children was (5.77±0.80)mm. Pupil diameter exhibited a significant increasing trend with age ( F =49.34, P trend < 0.01). Myopic children had a significantly larger mean pupil diameter [(6.10±0.73)mm] compared to non myopic children [(5.62±0.79)mm] with a statistically significant difference( t=18.10, P <0.01). Multivariable GLM analysis, adjusted for age, amplitude of accommodation, and uncorrected visual acuity, revealed a negative correlation between pupil diameter and cycloplegic SE (before PSM: β =-0.089, after PSM: β =-0.063, both P <0.01).
Conclusions
Myopic school age children exhibite larger pupil diameters than their non myopic counterparts. Pupil diameter may serve as a potential indicator for monitoring myopia development in school age children.
6.Identification of novel pathogenic variants in genes related to pancreatic β cell function: A multi-center study in Chinese with young-onset diabetes.
Fan YU ; Yinfang TU ; Yanfang ZHANG ; Tianwei GU ; Haoyong YU ; Xiangyu MENG ; Si CHEN ; Fengjing LIU ; Ke HUANG ; Tianhao BA ; Siqian GONG ; Danfeng PENG ; Dandan YAN ; Xiangnan FANG ; Tongyu WANG ; Yang HUA ; Xianghui CHEN ; Hongli CHEN ; Jie XU ; Rong ZHANG ; Linong JI ; Yan BI ; Xueyao HAN ; Hong ZHANG ; Cheng HU
Chinese Medical Journal 2025;138(9):1129-1131
7.Clinical practice guidelines for perioperative multimodality treatment of non-small cell lung cancer.
Wenjie JIAO ; Liang ZHAO ; Jiandong MEI ; Jia ZHONG ; Yongfeng YU ; Nan BI ; Lan ZHANG ; Lvhua WANG ; Xiaolong FU ; Jie WANG ; Shun LU ; Lunxu LIU ; Shugeng GAO
Chinese Medical Journal 2025;138(21):2702-2721
BACKGROUND:
Lung cancer is currently the most prevalent malignancy and the leading cause of cancer deaths worldwide. Although the early stage non-small cell lung cancer (NSCLC) presents a relatively good prognosis, a considerable number of lung cancer cases are still detected and diagnosed at locally advanced or late stages. Surgical treatment combined with perioperative multimodality treatment is the mainstay of treatment for locally advanced NSCLC and has been shown to improve patient survival. Following the standard methods of neoadjuvant therapy, perioperative management, postoperative adjuvant therapy, and other therapeutic strategies are important for improving patients' prognosis and quality of life. However, controversies remain over the perioperative management of NSCLC and presently consensus and standardized guidelines are lacking for addressing critical clinical issues in multimodality treatment.
METHODS:
The working group consisted of 125 multidisciplinary experts from thoracic surgery, medical oncology, radiotherapy, epidemiology, and psychology. This guideline was developed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. The clinical questions were collected and selected based on preliminary open-ended questionnaires and subsequent discussions during the Guideline Working Group meetings. PubMed, Web of Science, Cochrane Library, Scopus, and China National Knowledge Infrastructure (CNKI) were searched for available evidence. The GRADE system was used to evaluate the quality of evidence and grade the strengths of recommendations. Finally, the recommendations were developed through a structured consensus-building process.
RESULTS:
The Guideline Development Group initially collected a total of 62 important clinical questions. After a series of consensus-building conferences, 24 clinical questions were identified and corresponding recommendations were ultimately developed, focusing on neoadjuvant therapy, perioperative management, adjuvant therapy, postoperative psychological rehabilitation, prognosis assement, and follow-up protocols for NSCLC.
CONCLUSIONS
This guideline puts forward reasonable recommendations focusing on neoadjuvant therapy, perioperative management, adjuvant therapy, postoperative psychological rehabilitation, prognosis assessment, and follow-up protocol of NSCLC. It standardizes perioperative multimodality treatment and provides guidance for clinical practice among thoracic surgeons, medical oncologists, and radiotherapists, aiming to reduce postoperative recurrence, improve patient survival, accelerate recovery, and minimize postoperative complications such as atelectasis.
Humans
;
Carcinoma, Non-Small-Cell Lung/therapy*
;
Lung Neoplasms/therapy*
;
Combined Modality Therapy
;
Perioperative Care
8.Pharmacokinetics study of Dayuanyin in normal and febrile rats.
Yu-Jie HOU ; Kang-Ning XIAO ; Jian-Yun BI ; Xin-Jun ZHANG ; Xin-Rui LI ; Yu-Qing WANG ; Ming SU ; Xin-Ru SUN ; Hui ZHANG ; Bo-Yang WANG ; Li-Jie WANG ; Shan-Xin LIU
China Journal of Chinese Materia Medica 2025;50(2):527-533
Based on the pharmacokinetics theory, this study investigated the pharmacokinetic characteristics of albiflorin, paeoniflorin, wogonoside, and wogonin in normal and febrile rats and summarized absorption and elimination rules of Dayuanyin in them to provide reference for further development and clinical application of Dayuanyin. Blood samples were taken from the fundus venous plexus of normal and model rats after intragastric administration of Dayuanyin at different time points. The concentration of each substance in blood was determined by ultra performance liquid chromatography-triple quadrupole mass spectrometry(UPLC-MS/MS) technique at different time points. DAS 2.0, a piece of pharmacokinetics software, was used to calculate the pharmacokinetic parameters of each component. The results show that the 4 components had good linear relationship in their respective ranges, and the results of methodological investigation met the requirements. The pharmacokinetic parameters of C_(max), T_(max), t_(1/2), AUC_(0-t), AUC_(0-∞), and MRT_(0-t) were calculated by the DAS 2.0 non-compartmental model. Compared with those in the normal group, C_(max) and AUC_(0-t) of the 4 components in the model group were significantly increased. There were significant differences in the pharmacokinetic characteristics between the normal and model groups, suggesting that the absorption and elimination of Dayuanyin may be affected by the changes of internal environment of the body in different physiological states.
Animals
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Rats, Sprague-Dawley
;
Fever/metabolism*
;
Tandem Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Glucosides/pharmacokinetics*
;
Monoterpenes
9.Identification of tissue distribution components and mechanism of antipyretic effect of famous classical formula Dayuanyin.
Yu-Jie HOU ; Kang-Ning XIAO ; Jian-Yun BI ; Xin-Rui LI ; Ming SU ; Li-Jie WANG ; Yu-Qing WANG ; Dan-Dan SUN ; Hui ZHANG ; Xin-Jun ZHANG ; Shan-Xin LIU
China Journal of Chinese Materia Medica 2025;50(10):2810-2824
Based on the ultra performance liquid chromatography-quadrupole Exactive Orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) technology, combined with related literature, databases, and reference material information, this study qualitatively analyzed the components of Dayuanyin in the tissue of rats after gavage and employed molecular docking technology to predict the rationality of the mechanism behind the antipyretic effect of the in vivo components in Dayuanyin. A total of 21, 26, 20, 21, 14, and 31 prototype components and 3, 16, 3, 7, 5, and 24 metabolites were identified from the heart, liver, spleen, lung, kidney, and hypothalamus of the rats, respectively, and the binding ability of key components and targets was further verified by molecular docking. The results showed that all components had good binding ability with targets. The established UPLC-Q-Exactive Orbitrap-MS could effectively and quickly identify the Dayuanyin components distributed in tissue and preliminarily identify their metabolites. Many components were identified in the hypothalamus, which suggested that the components delivered to the brain should be focused on in the study on Dayuanyin in the treatment of febrile diseases. The molecular docking technology was used to predict the rationality of the mechanism behind its antipyretic effect, which lays the foundation for the clarification of the material basis and action mechanism of Dayuanyin, the development of new preparations, and the prediction of quality markers.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Molecular Docking Simulation
;
Male
;
Antipyretics/metabolism*
;
Rats, Sprague-Dawley
;
Tissue Distribution
;
Mass Spectrometry
;
Chromatography, High Pressure Liquid
;
Hypothalamus/metabolism*
10.Delayed covering causes the accumulation of motile sperm, leading to overestimation of sperm concentration and motility with a Makler counting chamber.
Lin YU ; Qing-Yuan CHENG ; Ye-Lin JIA ; Yan ZHENG ; Ting-Ting YANG ; Ying-Bi WU ; Fu-Ping LI
Asian Journal of Andrology 2025;27(1):59-64
According to the World Health Organization (WHO) manual, sperm concentration should be measured using an improved Neubauer hemocytometer, while sperm motility should be measured by manual assessment. However, in China, thousands of laboratories do not use the improved Neubauer hemocytometer or method; instead, the Makler counting chamber is one of the most widely used chambers. To study sources of error that could impact the measurement of the apparent concentration and motility of sperm using the Makler counting chamber and to verify its accuracy for clinical application, 67 semen samples from patients attending the Department of Andrology, West China Second University Hospital, Sichuan University (Chengdu, China) between 13 September 2023 and 27 September 2023, were included. Compared with applying the cover glass immediately, delaying the application of the cover glass for 5 s, 10 s, and 30 s resulted in average increases in the sperm concentration of 30.3%, 74.1%, and 107.5%, respectively (all P < 0.0001) and in the progressive motility (PR) of 17.7%, 30.8%, and 39.6%, respectively (all P < 0.0001). However, when the semen specimens were fixed with formaldehyde, a delay in the application of the cover glass for 5 s, 10 s, and 30 s resulted in an average increase in the sperm concentration of 6.7%, 10.8%, and 14.6%, respectively, compared with immediate application of the cover glass. The accumulation of motile sperm due to delays in the application of the cover glass is a significant source of error with the Makler counting chamber and should be avoided.
Humans
;
Male
;
Sperm Motility/physiology*
;
Sperm Count
;
Semen Analysis/methods*
;
Spermatozoa/physiology*
;
Time Factors


Result Analysis
Print
Save
E-mail