1.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
2.Characteristics and trends of severe/critical COVID-19cases in the Republic of Korea (January 2020 to August 2023)
Se-Jin JEONG ; Shin Young PARK ; Boyeong RYU ; Misuk AN ; Jin-Hwan JEON ; So Young CHOI ; Seong-Sun KIM
Osong Public Health and Research Perspectives 2025;16(1):81-88
Objectives:
We analyzed the demographic and clinical characteristics of patients diagnosedwith coronavirus disease 2019 (COVID-19), focusing specifically on severe/critical cases, andassessed the trends and rates of severity and fatality among these patients in the Republic of Korea.
Methods:
Clinical data on patients with COVID-19 from January 20, 2020 to August 30, 2023were collected from the Korea Disease Control and Prevention Agency’s database. We identified patients who progressed to severe/critical conditions and analyzed their demographic and clinical profiles. Severity and fatality rates were calculated and compared annually to track thedisease progression over time.
Results:
During the surveillance period, 34,572,554 COVID-19 cases were confirmed, among whom 38,112 (0.11%) progressed to severe/critical conditions. Most severe/critical cases occurred in individuals aged ≥60 years, with a notable increase in patients aged ≥80 years from 2022.The overall severity rate was 0.19%, with a fatality rate of 0.10%. However, the severity of cases gradually diminished during the study period. In 2022, the severity and fatality rates decreased to 0.14% and 0.09%, respectively. In 2023, while the severity rate remained stable at 0.15%, thefatality rate further decreased to 0.06%. Notably, throughout the study period, individuals aged ≥80 years had a significantly higher severity rate (2.44%), with a fatality rate of 1.75%.
Conclusion
These findings underscore the importance of prioritizing protection and management strategies for older adults and high-risk groups to mitigate the impact ofCOVID-19. Continued surveillance and analysis are essential to effectively control COVID-19 and minimize its burden on public health.
3.Low-Density Lipoprotein Cholesterol Level, the Lower the Better? Analysis of Korean Patients in the Treat Stroke to Target Trial
Hanim KWON ; Jae-Chan RYU ; Jae-Kwan CHA ; Sang Min SUNG ; Tae-Jin SONG ; Kyung Bok LEE ; Eung-Gyu KIM ; Yong-Won KIM ; Ji Hoe HEO ; Man Seok PARK ; Kyusik KANG ; Byung-Chul LEE ; Keun-Sik HONG ; Oh Young BANG ; Jei KIM ; Jong S. KIM
Journal of Stroke 2025;27(2):228-236
Background:
and Purpose The Treat Stroke to Target (TST) was a randomized clinical trial involving French and Korean patients demonstrating that a lower low-density lipoprotein cholesterol (LDL-C, <70 mg/dL) target group (LT) experienced fewer cerebro-cardiovascular events than a higher target (90–110 mg/dL) group (HT). However, whether these results can be applied to Asian patients with different ischemic stroke subtypes remains unclear.
Methods:
Patients from 14 South Korean centers were analyzed separately. Patients with ischemic stroke or transient ischemic attack with evidence of atherosclerosis were randomized into LT and HT groups. The primary endpoint was a composite of ischemic stroke, myocardial infarction, coronary or cerebral revascularization, and cardiovascular death.
Results:
Among 712 enrolled patients, the mean LDL-C level was 71.0 mg/dL in 357 LT patients and 86.1 mg/dL in 355 HT patients. The primary endpoint occurred in 24 (6.7%) of LT and in 31 (8.7%) of HT group patients (adjusted hazard ratio [HR]=0.78; 95% confidence interval [CI]=0.45–1.33, P=0.353). Cardiovascular events alone occurred significantly less frequently in the LT than in the HT group (HR 0.26, 95% CI 0.09–0.80, P=0.019), whereas there were no significant differences in ischemic stroke events (HR 1.12, 95% CI 0.60–2.10, P=0.712). The benefit of LT was less apparent in patients with small vessel disease and intracranial atherosclerosis than in those with extracranial atherosclerosis.
Conclusion
In contrast to the French TST, the outcomes in Korean patients were neutral. Although LT was more effective in preventing cardiovascular diseases, it was not so in stroke prevention, probably attributed to the differences in stroke subtypes. Further studies are needed to elucidate the efficacy of statins and appropriate LDL-C targets in Asian patients with stroke.
4.Reproducibility of Plasma Biomarker Measurements Across Laboratories:Insights Into ptau217, GFAP, and NfL
Heekyoung KANG ; Sook-Young WOO ; Daeun SHIN ; Sohyun YIM ; Eun Hye LEE ; Hyunchul RYU ; Bora CHU ; Henrik ZETTERBERG ; Kaj BLENNOW ; Jihwan YUN ; Duk L NA ; Hee Jin KIM ; Hyemin JANG ; Jun Pyo KIM ;
Dementia and Neurocognitive Disorders 2025;24(2):91-101
Background:
and Purpose: Plasma biomarkers, including phosphorylated tau (ptau217), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL), are promising tools for detecting Alzheimer’s disease (AD) pathology. However, cross-laboratory reproducibility remains a challenge, even when using identical analytical platforms such as single-molecule array (Simoa). This study aimed to compare plasma biomarker measurements (ptau217, GFAP, and NfL) between 2 laboratories, the University of Gothenburg (UGOT) and DNAlink, and evaluate their associations with amyloid positron emission tomography (PET) imaging.
Methods:
Plasma biomarkers were measured using Simoa platforms at both laboratories:the UGOT and DNAlink Incorporation. Diagnostic performance for predicting amyloid PET positivity, cross-laboratory agreement, and the impact of normalization techniques were assessed. Bland-Altman plots and correlation analyses were employed to evaluate agreement and variability.
Results:
Plasma ptau217 concentrations exhibited strong correlations with amyloid PET global centiloid values, with comparable diagnostic performance between laboratories (area under the curve=0.94 for UGOT and 0.95 for DNAlink). Cross-laboratory agreement for ptau217 was excellent (r=0.96), improving further after natural log transformation. GFAP and NfL also demonstrated moderate to strong correlations (r=0.86 for GFAP and r=0.99 for NfL), with normalization reducing variability.
Conclusions
Plasma biomarker measurements were consistent across laboratories using identical Simoa platforms, with strong diagnostic performance and improved agreement after normalization. These findings support the scalability of plasma biomarkers for multicenter studies and underscore their potential for standardized applications in AD research and clinical practice.
5.Study Protocol of Expanded Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro-EXP)
Jae Hoon MOON ; Eun Kyung LEE ; Wonjae CHA ; Young Jun CHAI ; Sun Wook CHO ; June Young CHOI ; Sung Yong CHOI ; A Jung CHU ; Eun-Jae CHUNG ; Yul HWANGBO ; Woo-Jin JEONG ; Yuh-Seog JUNG ; Kyungsik KIM ; Min Joo KIM ; Su-jin KIM ; Woochul KIM ; Yoo Hyung KIM ; Chang Yoon LEE ; Ji Ye LEE ; Kyu Eun LEE ; Young Ki LEE ; Hunjong LIM ; Do Joon PARK ; Sue K. PARK ; Chang Hwan RYU ; Junsun RYU ; Jungirl SEOK ; Young Shin SONG ; Ka Hee YI ; Hyeong Won YU ; Eleanor WHITE ; Katerina MASTROCOSTAS ; Roderick J. CLIFTON-BLIGH ; Anthony GLOVER ; Matti L. GILD ; Ji-hoon KIM ; Young Joo PARK
Endocrinology and Metabolism 2025;40(2):236-246
Background:
Active surveillance (AS) has emerged as a viable management strategy for low-risk papillary thyroid microcarcinoma (PTMC), following pioneering trials at Kuma Hospital and the Cancer Institute Hospital in Japan. Numerous prospective cohort studies have since validated AS as a management option for low-risk PTMC, leading to its inclusion in thyroid cancer guidelines across various countries. From 2016 to 2020, the Multicenter Prospective Cohort Study of Active Surveillance on Papillary Thyroid Microcarcinoma (MAeSTro) enrolled 1,177 patients, providing comprehensive data on PTMC progression, sonographic predictors of progression, quality of life, surgical outcomes, and cost-effectiveness when comparing AS to immediate surgery. The second phase of MAeSTro (MAeSTro-EXP) expands AS to low-risk papillary thyroid carcinoma (PTC) tumors larger than 1 cm, driven by the hypothesis that overall risk assessment outweighs absolute tumor size in surgical decision-making.
Methods:
This protocol aims to address whether limiting AS to tumors smaller than 1 cm may result in unnecessary surgeries for low-risk PTCs detected during their rapid initial growth phase. By expanding the AS criteria to include tumors up to 1.5 cm, while simultaneously refining and standardizing the criteria for risk assessment and disease progression, we aim to minimize overtreatment and maintain rigorous monitoring to improve patient outcomes.
Conclusion
This study will contribute to optimizing AS guidelines and enhance our understanding of the natural course and appropriate management of low-risk PTCs. Additionally, MAeSTro-EXP involves a multinational collaboration between South Korea and Australia. This cross-country study aims to identify cultural and racial differences in the management of low-risk PTC, thereby enriching the global understanding of AS practices and their applicability across diverse populations.
6.The Cancer Clinical Library Database (CCLD) from the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) Project
Sangwon LEE ; Yeon Ho CHOI ; Hak Min KIM ; Min Ah HONG ; Phillip PARK ; In Hae KWAK ; Ye Ji KANG ; Kui Son CHOI ; Hyun-Joo KONG ; Hyosung CHA ; Hyun-Jin KIM ; Kwang Sun RYU ; Young Sang JEON ; Hwanhee KIM ; Jip Min JUNG ; Jeong-Soo IM ; Heejung CHAE
Cancer Research and Treatment 2025;57(1):19-27
The common data model (CDM) has found widespread application in healthcare studies, but its utilization in cancer research has been limited. This article describes the development and implementation strategy for Cancer Clinical Library Databases (CCLDs), which are standardized cancer-specific databases established under the Korea-Clinical Data Utilization Network for Research Excellence (K-CURE) project by the Korean Ministry of Health and Welfare. Fifteen leading hospitals and fourteen academic associations in Korea are engaged in constructing CCLDs for 10 primary cancer types. For each cancer type-specific CCLD, cancer data experts determine key clinical data items essential for cancer research, standardize these items across cancer types, and create a standardized schema. Comprehensive clinical records covering diagnosis, treatment, and outcomes, with annual updates, are collected for each cancer patient in the target population, and quality control is based on six-sigma standards. To protect patient privacy, CCLDs follow stringent data security guidelines by pseudonymizing personal identification information and operating within a closed analysis environment. Researchers can apply for access to CCLD data through the K-CURE portal, which is subject to Institutional Review Board and Data Review Board approval. The CCLD is considered a pioneering standardized cancer-specific database, significantly representing Korea’s cancer data. It is expected to overcome limitations of previous CDMs and provide a valuable resource for multicenter cancer research in Korea.
7.Effects of Pressure Hemostasis Band Application on Bleeding, Pain, and Discomfort after Bone Marrow Examination
Jin Hee JUNG ; Bo-Eun KIM ; Ji Sook JU ; Mi RYU ; So Young CHOE ; Jong Hee CHOI ; Soo-Mee BANG ; Jeong-Ok LEE ; Ji Yun LEE ; Sang-A KIM
Asian Oncology Nursing 2025;25(1):17-27
Purpose:
The purpose of this study was to develop an approach to alleviate the discomfort caused by sandbag compression after a bone marrow examination. This research examined the effects of applying a pressure hemostasis band on bleeding, pain, and discomfort at the bone marrow examination site.
Methods:
This study was conducted with a nonequivalent control group non-synchronized design. For 74 patients under evaluation who underwent bone marrow examination, sandbag compression was applied to the examination site in the control group (n=37), and a pressure hemostasis band was applied to the intervention group (n=37). In both groups, absolute bed rest was performed for two hours, and bleeding, pain, and discomfort at the examination site were measured.
Results:
After two hours of the bone marrow examination, there was no difference in bleeding on the gauze between the two groups (F=0.59, p=.444). Bleeding occurred in three patients in the intervention group and six in the control group (χ 2 =1.14, p=.479), with no cases of hematoma detected in either group. One hour post-examination, the control group experienced significantly higher pain (F=5.45, p=.022) and discomfort (F=5.68, p=.020) than the intervention group. However, pain and discomfort levels were similar between groups after two hours.
Conclusion
Compared to the sandbag compression group, the band application group showed no difference in bleeding and experienced less pain and discomfort at the examination site. This confirms that the pressure hemostasis band is a suitable alternative to sandbag compression in post-examination care.
8.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
9.Characteristics and trends of severe/critical COVID-19cases in the Republic of Korea (January 2020 to August 2023)
Se-Jin JEONG ; Shin Young PARK ; Boyeong RYU ; Misuk AN ; Jin-Hwan JEON ; So Young CHOI ; Seong-Sun KIM
Osong Public Health and Research Perspectives 2025;16(1):81-88
Objectives:
We analyzed the demographic and clinical characteristics of patients diagnosedwith coronavirus disease 2019 (COVID-19), focusing specifically on severe/critical cases, andassessed the trends and rates of severity and fatality among these patients in the Republic of Korea.
Methods:
Clinical data on patients with COVID-19 from January 20, 2020 to August 30, 2023were collected from the Korea Disease Control and Prevention Agency’s database. We identified patients who progressed to severe/critical conditions and analyzed their demographic and clinical profiles. Severity and fatality rates were calculated and compared annually to track thedisease progression over time.
Results:
During the surveillance period, 34,572,554 COVID-19 cases were confirmed, among whom 38,112 (0.11%) progressed to severe/critical conditions. Most severe/critical cases occurred in individuals aged ≥60 years, with a notable increase in patients aged ≥80 years from 2022.The overall severity rate was 0.19%, with a fatality rate of 0.10%. However, the severity of cases gradually diminished during the study period. In 2022, the severity and fatality rates decreased to 0.14% and 0.09%, respectively. In 2023, while the severity rate remained stable at 0.15%, thefatality rate further decreased to 0.06%. Notably, throughout the study period, individuals aged ≥80 years had a significantly higher severity rate (2.44%), with a fatality rate of 1.75%.
Conclusion
These findings underscore the importance of prioritizing protection and management strategies for older adults and high-risk groups to mitigate the impact ofCOVID-19. Continued surveillance and analysis are essential to effectively control COVID-19 and minimize its burden on public health.
10.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.

Result Analysis
Print
Save
E-mail