1.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
2.Fibroblast growth factor-2 with a xenogenic bone substitute in the treatment of class III furcation in dogs
Xing-Hui PIAO ; Young-Joon KIM ; Jun-Young CHA ; Eui-Ri NA ; Jeong-In CHOI
Oral Biology Research 2025;49(1):3-
Achieving periodontal regeneration in class III furcation defects is challenging. Many studies have applied growth factors to periodontal defects, including fibroblast growth factors (FGFs), which demonstrate angiogenic activity and mitogenic ability. This study aimed to evaluate periodontal regeneration following the application of FGF-2 to deproteinized bovine bone mineral (DBBM) in surgically created supra-alveolar class III furcation defects of the mandibular premolars of beagles. The defects were divided into the control, DBBM, and FGF/DBBM groups. For the control group, only root planing was performed. For the DBBM group, only DBBM particles were implanted into the furcation. For the FGF/DBBM group, DBBM was soaked with 0.3% FGF-2 solution, and FGF-2/ DBBM was then positioned into the furcation. After 8 weeks, the dogs were euthanized. The micro-computed tomography analysis revealed that the changes in the bone volume of the furcation area were significantly greater in the FGF/DBBM group than in the DBBM group. In the histomorphometric analysis, the area of the newly formed bone was significantly greater in the FGF/DBBM group than in the DBBM or control group. The cementum extension was significantly longer in the FGF/DBBM or DBBM group than in the control group. The epithelial area was significantly less in the FGF/DBBM group than in the DBBM or control group. The application of FGF combined with DBBM to a class III defect enhanced the regeneration of periodontal tissues and increased the healing rate. This finding indicates that FGF-2 combined with DBBM can be applied to class III defects clinically.
3.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
4.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
5.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
6.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
7.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
8.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
9.Erratum: Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROSdependent inactivation of the PI3K/ Akt signaling pathway
Cheol PARK ; Eun Ok CHOI ; Hyun HWANGBO ; Hyesook LEE ; Jin-Woo JEONG ; Min Ho HAN ; Sung-Kwon MOON ; Seok Joong YUN ; Wun-Jae KIM ; Gi-Young KIM ; Hye-Jin HWANG ; Yung Hyun CHOI
Nutrition Research and Practice 2025;19(2):328-330
10.Progressive tooth pattern changes in Cilk1-deficient mice depending on Hedgehog signaling.
Minjae KYEONG ; Ju-Kyung JEONG ; Dinuka ADASOORIYA ; Shiqi KAN ; Jiwoo KIM ; Jieun SONG ; Sihyeon PARK ; Suyeon JE ; Seok Jun MOON ; Young-Bum PARK ; Hyuk Wan KO ; Eui-Sic CHO ; Sung-Won CHO
International Journal of Oral Science 2025;17(1):71-71
Primary cilia function as critical sensory organelles that mediate multiple signaling pathways, including the Hedgehog (Hh) pathway, which is essential for organ patterning and morphogenesis. Disruptions in Hh signaling have been implicated in supernumerary tooth formation and molar fusion in mutant mice. Cilk1, a highly conserved serine/threonine-protein kinase localized within primary cilia, plays a critical role in ciliary transport. Loss of Cilk1 results in severe ciliopathy phenotypes, including polydactyly, edema, and cleft palate. However, the role of Cilk1 in tooth development remains unexplored. In this study, we investigated the role of Cilk1 in tooth development. Cilk1 was found to be expressed in both the epithelial and mesenchymal compartments of developing molars. Cilk1 deficiency resulted in altered ciliary dynamics, characterized by reduced frequency and increased length, accompanied by downregulation of Hh target genes, such as Ptch1 and Sostdc1, leading to the formation of diastemal supernumerary teeth. Furthermore, in Cilk1-/-;PCS1-MRCS1△/△ mice, which exhibit a compounded suppression of Hh signaling, we uncovered a novel phenomenon: diastemal supernumerary teeth can be larger than first molars. Based on these findings, we propose a progressive model linking Hh signaling levels to sequential changes in tooth patterning: initially inducing diastemal supernumerary teeth, then enlarging them, and ultimately leading to molar fusion. This study reveals a previously unrecognized role of Cilk1 in controlling tooth morphology via Hh signaling and highlights how Hh signaling levels shape tooth patterning in a gradient-dependent manner.
Animals
;
Hedgehog Proteins/physiology*
;
Mice
;
Signal Transduction/physiology*
;
Tooth, Supernumerary
;
Molar
;
Cilia/physiology*
;
Odontogenesis/physiology*
;
Patched-1 Receptor
;
Protein Serine-Threonine Kinases/physiology*
;
Mice, Knockout
;
Adaptor Proteins, Signal Transducing

Result Analysis
Print
Save
E-mail