1.Exogenous administration of zinc chloride improves lung ischemia/reperfusion injury in rats.
Shu-Yuan WANG ; Jun-Peng XU ; Yuan CHENG ; Man HUANG ; Si-An CHEN ; Zhuo-Lun LI ; Qi-Hao ZHANG ; Yong-Yue DAI ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(5):811-819
The aim of this study was to investigate the contribution of lung zinc ions to pathogenesis of lung ischemia/reperfusion (I/R) injury in rats. Male Sprague Dawley (SD) rats were randomly divided into control group, lung I/R group (I/R group), lung I/R + low-dose zinc chloride group (LZnCl2+I/R group), lung I/R + high-dose ZnCl2 group (HZnCl2+I/R group), lung I/R + medium-dose ZnCl2 group (MZnCl2+I/R group) and TPEN+MZnCl2+I/R group (n = 8 in each group). Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure the concentration of zinc ions in lung tissue. The degree of lung tissue injury was analyzed by observing HE staining, alveolar damage index, lung wet/dry weight ratio and lung tissue gross changes. TUNEL staining was used to detect cellular apoptosis in lung tissue. Western blot and RT-qPCR were used to determine the protein expression levels of caspase-3 and ZIP8, as well as the mRNA expression levels of zinc transporters (ZIP, ZNT) in lung tissue. The mitochondrial membrane potential (MMP) of lung tissue was detected by JC-1 MMP detection kit. The results showed that, compared with the control group, the lung tissue damage, lung wet/dry weight ratio and alveolar damage index were significantly increased in the I/R group. And in the lung tissue, the concentration of Zn2+ was markedly decreased, while the cleaved caspase-3/caspase-3 ratio and apoptotic levels were significantly increased. The expression levels of ZIP8 mRNA and protein were down-regulated significantly, while the mRNA expression of other zinc transporters remained unchanged. There was also a significant decrease in MMP. Compared with the I/R group, both MZnCl2+I/R group and HZnCl2+I/R group exhibited significantly reduced lung tissue injury, lung wet/dry weight ratio and alveolar damage index, increased Zn2+ concentration, decreased ratio of cleaved caspase-3/caspase-3 and apoptosis, and up-regulated expression levels of ZIP8 mRNA and protein. In addition, the MMP was significantly increased in the lung tissue. Zn2+ chelating agent TPEN reversed the above-mentioned protective effects of medium-dose ZnCl2 on the lung tissue in the I/R group. The aforementioned results suggest that exogenous administration of ZnCl2 can improve lung I/R injury in rats.
Animals
;
Reperfusion Injury/pathology*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Chlorides/administration & dosage*
;
Lung/pathology*
;
Zinc Compounds/administration & dosage*
;
Apoptosis/drug effects*
;
Caspase 3/metabolism*
;
Cation Transport Proteins/metabolism*
2.Association analysis between forkhead box E1 gene and non-syndromic cleft lip with or without cleft palate in Han Chinese population.
Sixuan JIA ; Sidi ZHANG ; Yue YOU ; Jialin SUN ; Shijun DUAN ; Bing SHI ; Zhonglin JIA
West China Journal of Stomatology 2025;43(1):28-36
OBJECTIVES:
This study aims to explore the association between single nucleotide polymorphisms (SNPs) loci near the haplotype region hg19 chr9:100560865-100660865 of the forkhead box E1 (FOXE1) gene and the occurrence of non-syndromic cleft lip with or without cleft palate (NSCL/P) in western Han Chinese population.
METHODS:
In the first stage, our study recruited 159 NSCL/P patients and performed targeted region sequencing to screen SNPs loci near the haplotype region of the FOXE1 gene associated with NSCL/P. In the second stage, we selected 21 common SNPs and re-enrolled 1 000 non-syndromic cleft lip only (NSCLO) patients, 1 000 non-syndromic cleft palate only (NSCPO) patients, and 1 000 normal controls to verify the association. PLINK software was used to perform Hardy-Weinberg equilibrium (HWE) test. Association analysis for common variants, gene burden analysis for rare mutations, and function prediction of SNPs with non-synonymous mutations were performed using Mutation Taster and other software programs.
RESULTS:
In the first stage, 126 variants, including 76 single nucleotide variants and 50 insertion-deletions were identified. All the included SNPs confirmed to HWE, and the results of gene burden analysis and prediction of functional harmfulness for rare variants were not statistically significant. Association analysis showed that rs13292899 of the FOXE1 gene was significantly associated with NSCL/P (P=1.85E-27) and was also correlated with NSCLO (P=6.41E-23) and non-syndromic cleft lip with cleft palate (NSCLP) (P=2.36E-15) subtypes. In the validation phase, rs79268293 (P=0.013, P=0.022), rs10983951 (P=0.009 2, P=0.007 6), rs117227387 (P=0.009 2, P=0.007 6), rs3758250 (P=0.009 2, P=0.007 6), and rs116899397 (P=0.009 2, P=0.007 6) were significantly associated with NSCLO and NSCPO; rs13292899 (P=0.008 5), rs74606599 (P=0.008 3), rs143226042 (P=0.008 3), and rs117236550 (P=0.01) were associated with the occurrence of NSCLO; and rs12343182 (P=0.008 7), rs10119760 (P=0.012), rs10113907 (P=0.012), and rs13299924 (P=0.012) were associated with the occurrence of NSCPO.
CONCLUSIONS
This study found a new susceptible SNP rs13292899 of the FOXE1 gene that is closely associated with NSCL/P and NSCLO subtype and 13 other SNPs associated with NSCLO or NSCPO.
Female
;
Humans
;
Male
;
China
;
Cleft Lip/genetics*
;
Cleft Palate/genetics*
;
Forkhead Transcription Factors/genetics*
;
Haplotypes
;
Polymorphism, Single Nucleotide
;
East Asian People/genetics*
3.Identification of the sugarcane β-1,3-glucanase gene family and analysis of their expression under various stress conditions.
Tingchen HUANG ; Yifei XIA ; Yurong LUO ; Shoujian ZANG ; Yan CHEN ; Qinghong LIU ; Yingying LI ; Yue ZHANG ; Wenyue ZHANG ; Yachun SU ; Chuihuai YOU
Chinese Journal of Biotechnology 2025;41(7):2913-2933
Sugarcane (Saccharum spp.) is an important sugar crop. Biotic and abiotic stresses such as diseases, cold, and drought are major factors limiting sugarcane production. β-1,3-glucanase (EC 3.2.1.39), a member of the pathogenesis-related protein family, plays an essential role not only in the plant defenses against pathogens but also in plant growth, development, and abiotic stress responses. To systematically investigate the sugarcane β-1,3-glucanase gene family, 132 glycoside hydrolase (GH) 17 family members were identified in the genomes of the sugarcane wild species Saccharum spontaneum 'Np-X', the tropical species S. officinarum 'LA-Purple', and the Saccharum spp. hybrid cultivar 'R570'. The results of the phylogenetic analysis categorized them into four subfamilies, of which subfamily Ⅳ had the largest proportion of members (102). The members of the sugarcane GH17 gene family contained five conserved motifs and 0-16 introns. The majority of the GH17 genes exhibited a genome-wide replication pattern, with 89.50% originating from S. spontaneum 'Np-X' and S. officinarum 'LA-Purple', while 58.10% of them in the Saccharum spp. hybrid cultivar 'R570' belonged to the discrete replication type. Four major classes of cis-acting elements were identified in the promoters, including the elements related to plant growth, development, and tissue-specific expression (14.21%), light-responsive elements (38.24%), biotic or abiotic stress-responsive elements (9.18%), and hormone-responsive elements (38.37%), which suggested that this gene family was involved in plant growth, development, hormone responses, and stress responses. Transcriptome and quantitative real-time PCR (RT-qPCR) analyses showed that the sugarcane GH17 genes exhibited tissue-specific expression and were differentially expressed under low temperature, drought, and hormone treatments, as well as during the interactions between different sugarcane genotypes and Sporisorium scitamineum, suggesting their potential roles in plant defenses. In addition, some SsGlu genes (SsGlu5, SsGlu20, SsGlu21, SsGlu25, SsGlu28, and SsGlu39) were expected to serve as candidate stress-related genes. This study lays a foundation for further revealing the molecular mechanisms of the stress resistance of sugarcane via β-1,3-glucanase genes.
Saccharum/physiology*
;
Stress, Physiological/genetics*
;
Glucan 1,3-beta-Glucosidase/metabolism*
;
Multigene Family
;
Phylogeny
;
Gene Expression Regulation, Plant
;
Plant Proteins/genetics*
4.Targeted delivery of rosuvastatin enhances treatment of hyperhomocysteinemia-induced atherosclerosis using macrophage membrane-coated nanoparticles
Liu DAYUE ; Yang ANNING ; Li YULIN ; Li ZHENXIAN ; You PEIDONG ; Zhang HONGWEN ; Quan SHANGKUN ; Sun YUE ; Zeng YALING ; Ma SHENGCHAO ; Xiong JIANTUAN ; Hao YINJU ; Li GUIZHONG ; Liu BIN ; Zhang HUIPING ; Jiang YIDENG
Journal of Pharmaceutical Analysis 2024;14(9):1301-1319
Rosuvastatin(RVS)is an excellent drug with anti-inflammatory and lipid-lowering properties in the aca-demic and medical fields.However,this drug faces a series of challenges when used to treat atherosclerosis caused by hyperhomocysteinemia(HHcy),including high oral dosage,poor targeting,and long-term toxic side effects.In this study,we applied nanotechnology to construct a biomimetic nano-delivery system,macrophage membrane(M?m)-coated RVS-loaded Prussian blue(PB)nanoparticles(MPR NPs),for improving the bioavailability and targeting capacity of RVS,specifically to the plaque lesions associated with HHcy-induced atherosclerosis.In vitro assays demonstrated that MPR NPs effectively inhibited the Toll-like receptor 4(TLR4)/hypoxia-inducible factor-1α(HIF-1α)/nucleotide-binding and oligomerization domain(NOD)-like receptor thermal protein domain associated protein 3(NLRP3)signaling pathways,reducing pyroptosis and inflammatory response in macrophages.Additionally,MPR NPs reversed the abnormal distribution of adenosine triphosphate(ATP)-binding cassette transporter A1(ABCA1)/ATP binding cassette transporter G1(ABCA1)/ATP binding cassette transporter G1(ABCG1)caused by HIF-1α,promoting cholesterol efflux and reducing lipid deposition.In vivo studies using apolipoprotein E knockout(ApoE-/-)mice confirmed the strong efficacy of MPR NPs in treating atherosclerosis with favorable bio-security,and the mechanism behind this efficacy is believed to involve the regulation of serum metabolism and the remodeling of gut microbes.These findings suggest that the synthesis of MPR NPs provides a promising nanosystem for the targeted therapy of HHcy-induced atherosclerosis.
5.Mechanism of salvianolic acid B protecting H9C2 from OGD/R injury based on mitochondrial fission and fusion
Zi-xin LIU ; Gao-jie XIN ; Yue YOU ; Yuan-yuan CHEN ; Jia-ming GAO ; Ling-mei LI ; Hong-xu MENG ; Xiao HAN ; Lei LI ; Ye-hao ZHANG ; Jian-hua FU ; Jian-xun LIU
Acta Pharmaceutica Sinica 2024;59(2):374-381
This study aims to investigate the effect of salvianolic acid B (Sal B), the active ingredient of Salvia miltiorrhiza, on H9C2 cardiomyocytes injured by oxygen and glucose deprivation/reperfusion (OGD/R) through regulating mitochondrial fission and fusion. The process of myocardial ischemia-reperfusion injury was simulated by establishing OGD/R model. The cell proliferation and cytotoxicity detection kit (cell counting kit-8, CCK-8) was used to detect cell viability; the kit method was used to detect intracellular reactive oxygen species (ROS), total glutathione (t-GSH), nitric oxide (NO) content, protein expression levels of mitochondrial fission and fusion, apoptosis-related detection by Western blot. Mitochondrial permeability transition pore (MPTP) detection kit and Hoechst 33342 fluorescence was used to observe the opening level of MPTP, and molecular docking technology was used to determine the molecular target of Sal B. The results showed that relative to control group, OGD/R injury reduced cell viability, increased the content of ROS, decreased the content of t-GSH and NO. Furthermore, OGD/R injury increased the protein expression levels of dynamin-related protein 1 (Drp1), mitofusions 2 (Mfn2), Bcl-2 associated X protein (Bax) and cysteinyl aspartate specific proteinase 3 (caspase 3), and decreased the protein expression levels of Mfn1, increased MPTP opening level. Compared with the OGD/R group, it was observed that Sal B had a protective effect at concentrations ranging from 6.25 to 100 μmol·L-1. Sal B decreased the content of ROS, increased the content of t-GSH and NO, and Western blot showed that Sal B decreased the protein expression levels of Drp1, Mfn2, Bax and caspase 3, increased the protein expression level of Mfn1, and decreased the opening level of MPTP. In summary, Sal B may inhibit the opening of MPTP, reduce cell apoptosis and reduce OGD/R damage in H9C2 cells by regulating the balance of oxidation and anti-oxidation, mitochondrial fission and fusion, thereby providing a scientific basis for the use of Sal B in the treatment of myocardial ischemia reperfusion injury.
6.Mechanism of andrographolide alleviates lipopolysaccharide-induced fer-roptosis in renal tubular epithelial cells
Yi-Xin ZHANG ; Ming HUANG ; Guo-Dong CAO ; You-Cheng ZENG ; Liang LIN ; Xiao-Yue WANG ; Qing-Hong CHENG
Chinese Journal of Infection Control 2024;23(5):568-573
Objective To investigate the effect and mechanism of andrographolide(AG)on lipopolysaccharide(LPS)-induced ferroptosis in renal tubular epithelial cells(HK-2 cells).Methods HK-2 cells were treated with LPS to simulate the in vitro HK-2 injury model of sepsis.The cells were further treated with AG of 5,10,20,40 μmol/L and randomly divided into control group,LPS group,LPS+dimethyl sulfoxide group(DMSO group),and AG group.Cell viability was detected by the CCK-8 method,and the optimal concentrations of LPS and AG were screened.Cell morphological change,the levels of kidney injury markers,including neutrophil gelatinase-associated lipocalin(NGAL),kidney injury molecule-1(KIM-1),malondialdehyde(MDA),glutathione(GSH)and reactive oxygen species(ROS),as well as the expression levels of ferroptosis regulatory proteins such as solute carrier family 7 member 11(SLC7A11),glutathione peroxidase 4(GPX4)and ferritin in each group were compared,and the pro-tective effect of AG treatment on the cells was evaluated.Results Compared with the control group,the cell viabi-lity and GSH content decreased significantly in HK-2 cells treated with 10 μg/mL LPS;cell shrinkage and adhesion ability were poor;the contents of oxidative products MDA and ROS,as well as the levels of kidney injury markers NGAL and KIM-1 increased significantly,while expression levels of SLC7A11 and GPX4 protein decreased;ferritin expression level increased;differences were all statistically significant(all P<0.05).Compared with LPS group,the cell viability,GSH content,as well as protein expression levels of SLC7A11 and GPX4 increased significantly after AG intervention,while ferritin expression level decreased,differences were all significant(all P<0.05).MDA content,ROS fluorescence intensity,and the levels of kidney injury markers NGAL and KIM-1 decreased sig-nificantly,difference were all significant(all P<0.05).Conclusion AG has a protective effect on LPS-induced HK-2 cell injury,possibly by activating SLC7A11/GPX4 pathway,reducing oxidative stress,up-regulating antioxi-dant enzyme activity,and alleviating ferroptosis.
7.A study on the job preferences and heterogeneity of medical students from different birthplaces:A discrete choice experiment based on six hospitals in Beijing
Xin-Yan LI ; Yue ZHANG ; Yu-Xin SUN ; Xing LIN ; You-Li HAN
Chinese Journal of Health Policy 2024;17(1):51-59
Objective:To analysis the job preference and heterogeneity of medical students by distinguishing their birthplaces,and to provide reference for optimizing the management of primary health care resources.Methods:Using a cluster sampling method,an online survey of discrete choice experiment was conducted with 925 medical students from six teaching hospitals in Beijing,741 valid questionnaires were obtained,the effective recovery rate was 80.1%.The mixed logit model was used to perform regression analysis on six job attributes and estimate the willingness to pay.Results:There were significant differences in the choice of work location among medical students from different birthplaces.The subgroup results showed that compared to medical students from city,undergraduates from rural and county district preferred a work with sufficient career development opportunities.The results of undergraduate subgroup showed that undergraduates from rural district preferred a work with good environment than those from other birthplaces.Conclusion:There is heterogeneity in job preferences of medical students from different birthplaces.Policy makers should pay attention to the medical students'birthplace,also take the educational level into account to optimize the diversified job attributes,formulating targeted intervention to attract primary health care talents.
8.Early Primate Embryo Development Meets Single-cell Multi-omics
Zhi-Hui PAN ; Rong-Rong GUO ; You-Yue ZHANG ; Tao TAN
Progress in Biochemistry and Biophysics 2024;51(9):2000-2015
Given the constraints imposed by the “14-day ethics” rule, numerous critical events occurring between the second and fourth weeks of embryonic development remain poorly understood. This underscores the necessity of a detailed understanding of embryonic development and regulation during this period, which is indispensable for preventing pregnancy failure, treating birth defects, and promoting human reproductive health.Rodents, characterized by their small size, rapid growth, strong reproductive capacity, and fully sequenced genomes, are widely used as crucial models for studying embryonic development. However, the substantial physiological differences between rodents and primates due to evolutionary divergence make it challenging to directly apply findings from rodent studies to primates. Besides, primates, our closest relatives in terms of evolutionary phylogenetics and physiological characteristics, share more than 95% genetic homology with humans, underscoring the urgent need for primate research. Furthermore, early-stage embryonic cells are both scarce and diverse, making their regulatory mechanisms and developmental pathways typically elucidated through single-cell sequencing. For instance, three significant articles published in Science in 2018 mapped the complete atlas of organ and tissue development from fertilization and captured dynamic gene expression profiles in zebrafish and frogs through single-cell transcriptomics. Unfortunately, relying solely on single-cell omics analysis falls short in effectively and comprehensively deciphering the intricate cellular network information. Single-cell multi-omics empower researchers to systematically decode cell heterogeneity and developmental trajectories at the individual cell level by combining transcriptomics, epigenomics, proteomics, and metabolomics analyses. These emerging technologies play a significant role in life sciences, enabling the elucidation of critical early primate embryonic development events from a multi-dimensional perspective, including zygotic genome activation (ZGA), X-chromosome dosage compensation, origins of primordial germ cells (PGCs), mechanisms of cell fate determination, and pivotal events in gastrulation and early organogenesis.This article chronicles the advancement of pivotal technologies, from single-cell histology to multi-omics, beginning with the single-cell transcriptome and culminating in a comprehensive analysis according to the central dogma of molecular biology. It highlights the transition from a singular to a holistic perspective in cellular analysis and reviews the application of multi-omics techniques in unveiling early primate embryonic development. Finally, it delves into the application of multi-omics technologies in enhancing our understanding of early primate embryonic development and explores future possibilities, directions, and challenges in this rapidly evolving field. In doing so, it emphasizes the critical role of interdisciplinary approaches, combining insights from genetics, molecular biology, and bioinformatics to foster innovations in reproductive medicine and developmental biology. The integration of such technologies offers the promise of breakthroughs in understanding complex biological processes, potentially leading to novel therapeutic strategies and advancements in reproductive health and medicine.
9.Prediction model of platelet transfusion refractoriness in patients with hematological disorders
Shuhan YUE ; Xiulan HUANG ; Yan ZENG ; Qiao LEI ; Mengzhen HE ; Liqi LU ; Shisong YOU ; Jingwei ZHANG
Chinese Journal of Blood Transfusion 2024;37(8):890-895,939
Objective To explore the risk factors for platelet transfusion refractoriness(PTR)in patients with hemato-logical disorders,construct a prediction model and validate the model efficacy.Methods Patients with hematological disor-ders who received platelet transfusion therapy in the Chengdu Second People's Hospital from December 2021 to December 2022 were retrospectively included to judge the effectiveness of platelet transfusion and screened for risk factors by univariate and multivariate logistic regression.A prediction model for PTR was constructed using receiver operating characteristic(ROC)curve,calibration curve and decision curve(DCA)to assess the differentiation,calibration and clinical value of the model,respectively.Results A total of 334 hematological patients were included,including 168 males and 176 females,with a PTR incidence of 40.4%.Univariate and multivariate logistic regression analysis showed that platelet transfusion vol-ume,erythrocyte transfusion volume,and neutrophil ratio were risk factors for PTR(P<0.05).A prediction model for PTR in hematological patients was established based on these risk factors.The area under the model's curve was 0.8377(95%CI:0.723-0.772),the sensitivity was 58.52%,and the specificity was 89.95%.The calibration curve showed that the S∶P was 0.964,the maximum absolute difference Emax was 0.032,and the average absolute difference Eavg was 0.009.The DCA a-nalysis showed that the model had clinical application value when the risk threshold ranged from 0.2 to 0.9.Conclusion The PTR prediction model based on platelet transfusion volume,erythrocyte transfusion volume and neutrophil ratio can pro-vide a basis for effective platelet transfusion in hematological patients.
10.Small-molecule drug design strategies for regulating protein phosphorylation modification
Wen-yan YANG ; Jia-yi WANG ; Feng-jiao LIN ; Ke-ran WANG ; Yu-zhuo WU ; Zhao-cheng WANG ; Qi-dong YOU ; Lei WANG ; Qiu-yue ZHANG
Acta Pharmaceutica Sinica 2024;59(11):2912-2925
Protein phosphorylation modification is an important mechanism of physiological regulation that is closely related to protein biological functions. In particular, protein kinases are responsible for catalyzing the phosphorylation process of proteins, and phosphatases are responsible for catalyzing the dephosphorylation process of phosphorylation-modified proteins, which together mediate the achievement of dynamic and reversible phosphorylation modifications of proteins. Abnormal phosphorylation levels of proteins contribute to the development of many diseases, such as cancer, neurodegenerative diseases, and chronic diseases. Therefore, rational design of small molecules to regulate protein phosphorylation is an important approach for disease treatment. Based on the mechanism of protein phosphorylation regulation, small molecule drug design strategies can be classified into three types, protein kinase modulators, phosphatase modulators, and bifunctional molecules with proximity-mediated mechanism. This review emphasizes the above three small molecule design strategies for targeting protein phosphorylation regulation, including molecular design ideas, research progress and current challenges, and provides an outlook on small molecule modulators targeting protein phosphorylation modification.

Result Analysis
Print
Save
E-mail