1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.ADAR1 Regulates the ERK/c-FOS/MMP-9 Pathway to Drive the Proliferation and Migration of Non-small Cell Lung Cancer Cells.
Li ZHANG ; Xue PAN ; Wenqing YAN ; Shuilian ZHANG ; Chiyu MA ; Chenpeng LI ; Kexin ZHU ; Nijia LI ; Zizhong YOU ; Xueying ZHONG ; Zhi XIE ; Zhiyi LV ; Weibang GUO ; Yu CHEN ; Danxia LU ; Xuchao ZHANG
Chinese Journal of Lung Cancer 2025;28(9):647-657
BACKGROUND:
Double-stranded RNA-specific adenosine deaminase 1 (ADAR1) binds to double-stranded RNA and catalyzes the deamination of adenosine (A) to inosine (I). The functional mechanism of ADAR1 in non-small cell lung cancer (NSCLC) remains incompletely understood. This study aimed to investigate the prognostic significance of ADAR1 in NSCLC and to elucidate its potential role in regulating tumor cell proliferation and migration.
METHODS:
Data from The Cancer Genome Atlas (TCGA) and cBioPortal were analyzed to assess the correlation between high ADAR1 expression and clinicopathological features as well as prognosis in lung cancer. We performed Western blot (WB), cell proliferation assays, Transwell invasion/migration assays, and nude mouse xenograft modeling to examine the phenotypic changes and molecular mechanisms induced by ADAR1 knockdown. Furthermore, the ADAR1 p150 overexpression model was utilized to validate the proposed mechanism.
RESULTS:
ADAR1 expression was significantly elevated in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) tissues compared with adjacent non-tumor tissues (LUAD: P=3.70×10-15, LUSC: P=0.016). High ADAR1 expression was associated with poor prognosis (LUAD: P=2.03×10-2, LUSC: P=2.81×10-2) and distant metastasis (P=0.003). Gene Set Enrichment Analysis (GSEA) indicated that elevated ADAR1 was associated with mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway activation, matrix metalloproteinase-9 (MMP-9) expression, and cell adhesion. ADAR1 and MMP-9 levels showed a strongly positive correlation (P=6.45×10-34) in 10 lung cancer cell lines, highest in H1581. Knockdown of ADAR1 in H1581 cells induced a rounded cellular morphology with reduced pseudopodia. Concomitantly, it suppressed cell proliferation, invasion, migration, and in vivo tumorigenesis. It also suppressed ERK phosphorylation and downregulated cellular Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog (c-FOS), MMP-9, N-cadherin, and Vimentin. Conversely, ADAR1 p150 overexpression in PC9 cells enhanced ERK phosphorylation and increased c-FOS and MMP-9 expression.
CONCLUSIONS
High ADAR1 expression is closely associated with poor prognosis and distant metastasis in NSCLC patients. Mechanistically, ADAR1 may promote proliferation, invasion, migration, and tumorigenesis in lung cancer cells via the ERK/c-FOS/MMP-9 axis.
Humans
;
Lung Neoplasms/physiopathology*
;
Adenosine Deaminase/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Cell Proliferation
;
Carcinoma, Non-Small-Cell Lung/physiopathology*
;
Cell Movement
;
Animals
;
Mice
;
RNA-Binding Proteins/genetics*
;
Female
;
Male
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-fos/genetics*
;
Middle Aged
;
MAP Kinase Signaling System
;
Gene Expression Regulation, Neoplastic
;
Mice, Nude
;
Extracellular Signal-Regulated MAP Kinases/genetics*
3.Pien Tze Huang Attenuates Cell Proliferation and Stemness Promoted by miR-483-5p in Hepatocellular Carcinoma Cells.
Li-Hui WEI ; Xi CHEN ; A-Ling SHEN ; Yi FANG ; Qiu-Rong XIE ; Zhi GUO ; Thomas J SFERRA ; You-Qin CHEN ; Jun PENG
Chinese journal of integrative medicine 2025;31(9):782-791
OBJECTIVE:
To investigate the effect of miR-483-5p on hepatocellular carcinoma (HCC) cells proliferation and stemness, as well as the attenuating effect of Pien Tze Huang (PZH).
METHODS:
Differentially expressed miRNA between HepG2 cells and hepatic cancer stem-like cells (HCSCs) were identified by a miRNA microarray assay. miR-483-5p mimics were transfected into HepG2 cells to explore the effects of miR-483-5p on cell proliferation and stemness. HepG2 cells and HCSCs were treated with PZH (0, 0.25, 0.50 and 0.75 mg/mL) to explore the effects of PZH on the proliferation and stemness, both in non-induced state and the state induced by miR-483-5p mimics.
RESULTS:
miR-483-5p was significantly up-regulated in HCSCs and its overexpression increased cell proliferation and stemness in HepG2 cells (P<0.05). PZH not only significantly inhibited proliferation in HepG2 cells, but also significantly suppressed the cell proliferation and self-renewal of HCSCs (P<0.05). The effects of miR-483-5p mimics on proliferation and stemness of HepG2 cells were partially abolished by PZH.
CONCLUSIONS
miR-483-5p promotes proliferation and enhances stemness of HepG2 cells, which were attenuated by PZH, demonstrating that miR-483-5p is a potential molecular target for the treatment of HCC and provide experimental evidence to support clinical use of PZH for patients with HCC.
Humans
;
MicroRNAs/metabolism*
;
Cell Proliferation/drug effects*
;
Liver Neoplasms/drug therapy*
;
Carcinoma, Hepatocellular/drug therapy*
;
Hep G2 Cells
;
Neoplastic Stem Cells/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Gene Expression Regulation, Neoplastic/drug effects*
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Silent or low expression of bla TEM and bla SHV suggests potential for targeted proteomics in clinical detection of β-lactamase-related antimicrobial resistance.
Huige WU ; Wenting DONG ; Xinxin HU ; Chunyang XIE ; Xinyi YANG ; Congran LI ; Guoqing LI ; Yun LU ; Xuefu YOU
Journal of Pharmaceutical Analysis 2025;15(7):101220-101220
Image 1.
7.Advances in therapeutic drug monitoring methods based on liquid chromatography-tandem mass spectrometry
Ziying LI ; Jie XIE ; Ziyu QU ; You JIANG ; Di ZHANG ; Songlin YU ; Xiaoli MA ; Ling QIU ; Xinhua DAI ; Xiang FANG ; Xiaoping YU
Chinese Journal of Laboratory Medicine 2024;47(3):332-340
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) technology has the characteristics of high specificity and high throughput, making it rapidly applied and developed in the field of clinical testing. Its application in the monitoring of therapeutic drugs can effectively improve the quantitative accuracy and sensitivity, and formulate a personalized and optimal dosing plan for patients. However, this technology still faces some challenges, and automation, quality control, and quantitative traceability will be the future development direction.
8.Construction and characterization of lpxC deletion strain based on CRISPR/Cas9 in Acinetobacter baumannii
Zong-ti SUN ; You-wen ZHANG ; Hai-bin LI ; Xiu-kun WANG ; Jie YU ; Jin-ru XIE ; Peng-bo PANG ; Xin-xin HU ; Tong-ying NIE ; Xi LU ; Jing PANG ; Lei HOU ; Xin-yi YANG ; Cong-ran LI ; Lang SUN ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(5):1286-1294
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria. Unlike most Gram-negative bacteria,
9.Immune effect of H9N2 subtype AIV NP protein by prokaryotic expression
Xiaofeng LI ; Zhixun XIE ; Zhihua RUAN ; Meng LI ; Dan LI ; Minxiu ZHANG ; Zhiqin XIE ; Sisi LUO ; You WEI ; Liji XIE ; Tingting ZENG ; Yanfang ZHANG ; Jiaoling HUANG ; Sheng WANG
Chinese Journal of Veterinary Science 2024;44(6):1113-1119
The aim of this study is to investigate the immune effect of H9 subtype avian influenza virus(AIV)NP protein on mice and lay the foundation for the development of avian influenza vi-rus(AIV)vaccine.The H9N2 virus NP gene amplification product was cloned into the pET-32a expression vector,and the protein expression was verified by SDS-PAGE and Western blot,and the immune effect was evaluated by measuring the secretion of supernatant multicytokines in mouse splenocytes culture.The results showed that the total length of the coding region sequence of NP gene was 1 497 bp,NP recombinant proteins exist in both soluble and insoluble protein forms,and the specific bands were visible in Western blot.After immunizing mice,serum produces IgG-bind-ing antibodies with antibody titers of 1∶40 000.Compared with the control group,IL-2,IL-5 and IL-13 were significantly increased(P<0.001),and the secretion of IL-6 was significantly increased compared with the control group.IL-4 and IL-12 p70 secretions were elevated compared with con-trols,but there was no significant difference.Compared with the control group,the secretions of IL-1β,IL-18,GM-CMF,TNF-α and IFN-γ were inhibited,but the difference was not significant(P>0.05).The results showed that NP recombinant protein is a good immunogen,laying a foundation for in-depth research on influenza vaccine.
10.Mechanism of TREX1-mediated immune regulation and its role in sepsis
Jing XIE ; Qilan LI ; Chenggang GAO ; Yajun HE ; Jiqian XU ; You SHANG
Chinese Critical Care Medicine 2024;36(8):877-881
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis-induced cell lysis and necrosis lead to the passive release of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) into circulation. These DNAs bind to pattern recognition receptor (PRR), triggering excessive inflammatory cytokines production and increasing mortality. Three prime repair exonuclease 1 (TREX1) is a 3' to 5' exonuclease that rapidly degrades single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) by cleaving phosphodiester bonds. This process can prevent the accumulation of damaged DNA in the cytoplasm, thereby averting abnormal inflammation and pathological immune responses. TREX1 thus plays a significant role in regulating DNA-related damage caused by sepsis. However, the role and underlying mechanisms of TREX1 in sepsis have not been thoroughly discussed. This review aims to elucidate the structure and function of TREX1 and its mediated immune regulatory mechanisms, with the hope of clarifying the potential role of TREX1 in the field of sepsis.

Result Analysis
Print
Save
E-mail