1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.ADAR1 Regulates the ERK/c-FOS/MMP-9 Pathway to Drive the Proliferation and Migration of Non-small Cell Lung Cancer Cells.
Li ZHANG ; Xue PAN ; Wenqing YAN ; Shuilian ZHANG ; Chiyu MA ; Chenpeng LI ; Kexin ZHU ; Nijia LI ; Zizhong YOU ; Xueying ZHONG ; Zhi XIE ; Zhiyi LV ; Weibang GUO ; Yu CHEN ; Danxia LU ; Xuchao ZHANG
Chinese Journal of Lung Cancer 2025;28(9):647-657
BACKGROUND:
Double-stranded RNA-specific adenosine deaminase 1 (ADAR1) binds to double-stranded RNA and catalyzes the deamination of adenosine (A) to inosine (I). The functional mechanism of ADAR1 in non-small cell lung cancer (NSCLC) remains incompletely understood. This study aimed to investigate the prognostic significance of ADAR1 in NSCLC and to elucidate its potential role in regulating tumor cell proliferation and migration.
METHODS:
Data from The Cancer Genome Atlas (TCGA) and cBioPortal were analyzed to assess the correlation between high ADAR1 expression and clinicopathological features as well as prognosis in lung cancer. We performed Western blot (WB), cell proliferation assays, Transwell invasion/migration assays, and nude mouse xenograft modeling to examine the phenotypic changes and molecular mechanisms induced by ADAR1 knockdown. Furthermore, the ADAR1 p150 overexpression model was utilized to validate the proposed mechanism.
RESULTS:
ADAR1 expression was significantly elevated in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) tissues compared with adjacent non-tumor tissues (LUAD: P=3.70×10-15, LUSC: P=0.016). High ADAR1 expression was associated with poor prognosis (LUAD: P=2.03×10-2, LUSC: P=2.81×10-2) and distant metastasis (P=0.003). Gene Set Enrichment Analysis (GSEA) indicated that elevated ADAR1 was associated with mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway activation, matrix metalloproteinase-9 (MMP-9) expression, and cell adhesion. ADAR1 and MMP-9 levels showed a strongly positive correlation (P=6.45×10-34) in 10 lung cancer cell lines, highest in H1581. Knockdown of ADAR1 in H1581 cells induced a rounded cellular morphology with reduced pseudopodia. Concomitantly, it suppressed cell proliferation, invasion, migration, and in vivo tumorigenesis. It also suppressed ERK phosphorylation and downregulated cellular Finkel-Biskis-Jinkins murine osteosarcoma viral oncogene homolog (c-FOS), MMP-9, N-cadherin, and Vimentin. Conversely, ADAR1 p150 overexpression in PC9 cells enhanced ERK phosphorylation and increased c-FOS and MMP-9 expression.
CONCLUSIONS
High ADAR1 expression is closely associated with poor prognosis and distant metastasis in NSCLC patients. Mechanistically, ADAR1 may promote proliferation, invasion, migration, and tumorigenesis in lung cancer cells via the ERK/c-FOS/MMP-9 axis.
Humans
;
Lung Neoplasms/physiopathology*
;
Adenosine Deaminase/genetics*
;
Matrix Metalloproteinase 9/genetics*
;
Cell Proliferation
;
Carcinoma, Non-Small-Cell Lung/physiopathology*
;
Cell Movement
;
Animals
;
Mice
;
RNA-Binding Proteins/genetics*
;
Female
;
Male
;
Cell Line, Tumor
;
Proto-Oncogene Proteins c-fos/genetics*
;
Middle Aged
;
MAP Kinase Signaling System
;
Gene Expression Regulation, Neoplastic
;
Mice, Nude
;
Extracellular Signal-Regulated MAP Kinases/genetics*
5.Pien Tze Huang Attenuates Cell Proliferation and Stemness Promoted by miR-483-5p in Hepatocellular Carcinoma Cells.
Li-Hui WEI ; Xi CHEN ; A-Ling SHEN ; Yi FANG ; Qiu-Rong XIE ; Zhi GUO ; Thomas J SFERRA ; You-Qin CHEN ; Jun PENG
Chinese journal of integrative medicine 2025;31(9):782-791
OBJECTIVE:
To investigate the effect of miR-483-5p on hepatocellular carcinoma (HCC) cells proliferation and stemness, as well as the attenuating effect of Pien Tze Huang (PZH).
METHODS:
Differentially expressed miRNA between HepG2 cells and hepatic cancer stem-like cells (HCSCs) were identified by a miRNA microarray assay. miR-483-5p mimics were transfected into HepG2 cells to explore the effects of miR-483-5p on cell proliferation and stemness. HepG2 cells and HCSCs were treated with PZH (0, 0.25, 0.50 and 0.75 mg/mL) to explore the effects of PZH on the proliferation and stemness, both in non-induced state and the state induced by miR-483-5p mimics.
RESULTS:
miR-483-5p was significantly up-regulated in HCSCs and its overexpression increased cell proliferation and stemness in HepG2 cells (P<0.05). PZH not only significantly inhibited proliferation in HepG2 cells, but also significantly suppressed the cell proliferation and self-renewal of HCSCs (P<0.05). The effects of miR-483-5p mimics on proliferation and stemness of HepG2 cells were partially abolished by PZH.
CONCLUSIONS
miR-483-5p promotes proliferation and enhances stemness of HepG2 cells, which were attenuated by PZH, demonstrating that miR-483-5p is a potential molecular target for the treatment of HCC and provide experimental evidence to support clinical use of PZH for patients with HCC.
Humans
;
MicroRNAs/metabolism*
;
Cell Proliferation/drug effects*
;
Liver Neoplasms/drug therapy*
;
Carcinoma, Hepatocellular/drug therapy*
;
Hep G2 Cells
;
Neoplastic Stem Cells/metabolism*
;
Drugs, Chinese Herbal/therapeutic use*
;
Gene Expression Regulation, Neoplastic/drug effects*
6.Silent or low expression of bla TEM and bla SHV suggests potential for targeted proteomics in clinical detection of β-lactamase-related antimicrobial resistance.
Huige WU ; Wenting DONG ; Xinxin HU ; Chunyang XIE ; Xinyi YANG ; Congran LI ; Guoqing LI ; Yun LU ; Xuefu YOU
Journal of Pharmaceutical Analysis 2025;15(7):101220-101220
Image 1.
7.Research progress of mitophagy in asthma
Yingzhi He ; You Wang ; Xuemei Chen ; Yuwei Xie ; Dang Ao ; Chuanghong Ke ; Wen Li
Acta Universitatis Medicinalis Anhui 2025;60(4):766-771
Abstract
Asthma is a well-characterized heterogeneous disease marked by airway remodeling and chronic airway inflammation. Clinically, the treatment of asthma primarily relies on hormonal drugs. However, the long-term use of these medications can lead to significant side effects. Mitophagy is a biological process that selectively transports damaged mitochondria to lysosomes for degradation. Recent research has revealed the crosstalk between mitophagy and asthma. Accordingly, taking mitophagy as an entry point, summarizing the key molecular mechanisms and regulators of mitophagy in asthma will facilitate the development of novel intervention targets and strategies for asthmatic treatment.
8.Risk factors and predictive model of cerebral edema after road traffic accidents-related traumatic brain injury
Di-You CHEN ; Peng-Fei WU ; Xi-Yan ZHU ; Wen-Bing ZHAO ; Shi-Feng SHAO ; Jing-Ru XIE ; Dan-Feng YUAN ; Liang ZHANG ; Kui LI ; Shu-Nan WANG ; Hui ZHAO
Chinese Journal of Traumatology 2024;27(3):153-162
Purpose::Cerebral edema (CE) is the main secondary injury following traumatic brain injury (TBI) caused by road traffic accidents (RTAs). It is challenging to be predicted timely. In this study, we aimed to develop a prediction model for CE by identifying its risk factors and comparing the timing of edema occurrence in TBI patients with varying levels of injuries.Methods::This case-control study included 218 patients with TBI caused by RTAs. The cohort was divided into CE and non-CE groups, according to CT results within 7 days. Demographic data, imaging data, and clinical data were collected and analyzed. Quantitative variables that follow normal distribution were presented as mean ± standard deviation, those that do not follow normal distribution were presented as median (Q 1, Q 3). Categorical variables were expressed as percentages. The Chi-square test and logistic regression analysis were used to identify risk factors for CE. Logistic curve fitting was performed to predict the time to secondary CE in TBI patients with different levels of injuries. The efficacy of the model was evaluated using the receiver operator characteristic curve. Results::According to the study, almost half (47.3%) of the patients were found to have CE. The risk factors associated with CE were bilateral frontal lobe contusion, unilateral frontal lobe contusion, cerebral contusion, subarachnoid hemorrhage, and abbreviated injury scale (AIS). The odds ratio values for these factors were 7.27 (95% confidence interval ( CI): 2.08 -25.42, p = 0.002), 2.85 (95% CI: 1.11 -7.31, p = 0.030), 2.62 (95% CI: 1.12 -6.13, p = 0.027), 2.44 (95% CI: 1.25 -4.76, p = 0.009), and 1.5 (95% CI: 1.10 -2.04, p = 0.009), respectively. We also observed that patients with mild/moderate TBI (AIS ≤ 3) had a 50% probability of developing CE 19.7 h after injury (χ 2= 13.82, adjusted R2 = 0.51), while patients with severe TBI (AIS > 3) developed CE after 12.5 h (χ 2= 18.48, adjusted R2 = 0.54). Finally, we conducted a receiver operator characteristic curve analysis of CE time, which showed an area under the curve of 0.744 and 0.672 for severe and mild/moderate TBI, respectively. Conclusion::Our study found that the onset of CE in individuals with TBI resulting from RTAs was correlated with the severity of the injury. Specifically, those with more severe injuries experienced an earlier onset of CE. These findings suggest that there is a critical time window for clinical intervention in cases of CE secondary to TBI.
9.Blast injuries with contrasting outcomes treated by military surgery strategies: A case report
Di-You CHEN ; Xi-Yan ZHU ; Wei MA ; Shi-Feng SHAO ; Liang ZHANG ; Jing-Ru XIE ; Yao-Li WANG ; Hui ZHAO
Chinese Journal of Traumatology 2024;27(6):414-419
The treatment strategy for blast injuries is closely linked to the clinical outcome of blast injury casualties. However, the application of military surgery experience to blast injuries caused by production safety accidents is relatively uncommon. In this study, the authors present 2 cases of blast injuries caused by one gas explosion, both cases involved individuals of the same age and gender and experienced similar degree of injury. The authors highlight the importance of using a military surgery treatment strategy, specifically emphasizing the need to understand the concept of damage control and disposal. It is recommended that relevant training in this area should be strengthened to improve the clinical treatment of such injuries. This study provides a valuable reference for healthcare professionals dealing with blast injuries.
10.CT-guided hook-wire localization of ≤10 mm pulmonary ground-glass nodules via different path ways before video-assisted thoracoscopic surgery:a comparative study
Xingxiong ZOU ; Junjie XIA ; Hongwei LI ; Junqiang YANG ; Yu QIU ; Ming YANG ; Wenjun LI ; Wenying XIE ; Huihong XUE ; Jingxiu YOU ; Mi GA ; Juan WANG
Journal of Interventional Radiology 2024;33(8):884-890
Objective To compare the clinical safety and efficacy of CT-guided hook-wire localization of≤10mm pulmonary ground-glass nodule(GGN)via different path ways before video-assisted thoracoscopic surgery(VATS).Methods The clinical data of a total of 128 patients with 10 mm pulmonary GGN,who received CT-guided hook wire localization before VATS at The Third Hospital of Mianyang of China between July 2018 and March 2023,were retrospectively analyzed.According to the puncturing localization path way mode,the patients were divided into vertical puncturing group(n=88)and non-vertical puncturing group(n=40).The number of puncturing times,the time spent for puncturing localization,the success rate of puncture,the operation time of VATS,and puncture-related complications of the two groups were recorded.Results No statistically significant differences in the gender,age,smoking history,GGN location,puncture position,nodule size,density characteristics of GGN,emphysema,and nodules-pleura distance existed between the two groups(all P>0.05).Compared with non-vertical puncturing group,in vertical puncturing group the number of puncturing times was smaller,the time spent for localization was shorter,the incidence of pneumothorax was lower,and the operation time of VATS was shorter,the differences in all the above indexes between the two groups were statistically significant(all P<0.05);and the subgroup analysis of patients whose GGN was overlapped with rib shadow obtained the same results.Binary logistic regression analysis revealed that non-vertical puncturing and the number of puncturing times were the independent risk factors for the occurrence of pneumothorax.Conclusion CT-guided hook-wire localization of≤10mm pulmonary GGN before VATS is clinically safe and effective.Under the condition when the lesion can be localized within the range of 2.0cm and the shadow overlapping of GGN with the rib and blood vessel can be effectively avoided,vertical puncturing path way mode should be preferred,which can effectively reduce the incidence of pneumothorax and shorten the operation time of VATS.


Result Analysis
Print
Save
E-mail