1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Research progress on the mechanisms of Tau phosphorylation and its kinases in hypoxic-ischemic brain damage.
Qi-Yi HUANG ; You XIANG ; Jia-Hang TANG ; Li-Jia CHEN ; Kun-Lin LI ; Wei-Fang ZHAO ; Qian WANG
Acta Physiologica Sinica 2025;77(1):139-150
Hypoxic-ischemic brain damage (HIBD) is one of the main causes of disability in middle-aged and elderly people, as well as high mortality rates and long-term physical impairments in newborns. The pathological manifestations of HIBD include neuronal damage and loss of myelin sheaths. Tau protein is an important microtubule-associated protein in brain, exists in neurons and oligodendrocytes, and regulates various cellular activities such as cell differentiation and maturation, axonal transport, and maintenance of cellular cytoskeleton structure. Phosphorylation is a common chemical modification of Tau. In physiological condition, it maintains normal cell cytoskeleton and biological functions by regulating Tau structure and function. In pathological conditions, it leads to abnormal Tau phosphorylation and influences its structure and functions, resulting in Tauopathies. Studies have shown that brain hypoxia-ischemia could cause abnormal alteration in Tau phosphorylation, then participating in the pathological process of HIBD. Meanwhile, brain hypoxia-ischemia can induce oxidative stress and inflammation, and multiple Tau protein kinases are activated and involved in Tau abnormal phosphorylation. Therefore, exploring specific molecular mechanisms by which HIBD activates Tau protein kinases, and elucidating their relationship with abnormal Tau phosphorylation are crucial for future researches on HIBD related treatments. This review aims to focus on the mechanisms of the role of Tau phosphorylation in HIBD, and the potential relationships between Tau protein kinases and Tau phosphorylation, providing a basis for intervention and treatment of HIBD.
Humans
;
tau Proteins/physiology*
;
Phosphorylation
;
Hypoxia-Ischemia, Brain/physiopathology*
;
Animals
;
Oxidative Stress
5.Targeting IRG1 in tumor-associated macrophages for cancer therapy.
Shuang LIU ; Lin-Xing WEI ; Qian YU ; Zhi-Wei GUO ; Chang-You ZHAN ; Lei-Lei CHEN ; Yan LI ; Dan YE
Protein & Cell 2025;16(6):478-483
6.Data-independent Acquisition-Based Quantitative Proteomic Analysis Reveals Potential Salivary Biomarkers of Primary Sj?gren's Syndrome
Tian YI-CHAO ; Guo CHUN-LAN ; Li ZHEN ; You XIN ; Liu XIAO-YAN ; Su JIN-MEI ; Zhao SI-JIA ; Mu YUE ; Sun WEI ; Li QIAN
Chinese Medical Sciences Journal 2024;39(1):19-28,中插3
Objective As primary Sj?gren's syndrome(pSS)primarily affects the salivary glands,saliva can serve as an indicator of the glands'pathophysiology and the disease's status.This study aims to illustrate the salivary proteomic profiles of pSS patients and identify potential candidate biomarkers for diagnosis. Methods The discovery set contained 49 samples(24 from pSS and 25 from age-and gender-matched healthy controls[HCs])and the validation set included 25 samples(12 from pSS and 13 from HCs).Totally 36 pSS patients and 38 HCs were centrally randomized into the discovery set or to the validation set at a 2:1 ratio.Unstimulated whole saliva samples from pSS patients and HCs were analyzed using a data-independent acquisition(DIA)strategy on a 2D LC-HRMS/MS platform to reveal differential proteins.The crucial proteins were verified using DIA analysis and annotated using gene ontology(GO)and International Pharmaceutical Abstracts(IPA)analysis.A prediction model for SS was established using random forests. Results A total of 1,963 proteins were discovered,and 136 proteins exhibited differential representation in pSS patients.The bioinformatic research indicated that these proteins were primarily linked to immunological functions,metabolism,and inflammation.A panel of 19 protein biomarkers was identified by ranking order based on P-value and random forest algorichm,and was validated as the predictive biomarkers exhibiting good performance with area under the curve(AUC)of 0.817 for discovery set and 0.882 for validation set. Conclusions The candidate protein panel discovered may aid in pSS diagnosis.Salivary proteomic analysis is a promising non-invasive method for prognostic evaluation and early and precise treatments for pSS patients.DIA offers the best time efficiency and data dependability and may be a suitable option for future research on the salivary proteome.
7.Th17/Treg balance and macrophage polarization ratio in lower extremity arteriosclerosis obliterans
Zhen-Zhen Li ; Min Liu ; Xiong-Hui He ; Zhen-Dong Liu ; Zhan-Xiang Xiao ; Hao Qian ; You-Fei Qi ; Cun-Chuan Wang
Asian Pacific Journal of Tropical Biomedicine 2024;14(3):127-136
Objective: To explore the balance of peripheral blood T helper 17 cells/regulatory T cell (Th17/Treg) ratio and the polarization ratio of M1 and M2 macrophages in lower extremity arteriosclerosis obliterans (ASO). Methods: A rat model of lower extremity ASO was established, and blood samples from patients with lower extremity ASO before and after surgery were obtained. ELISA was used to detect interleukin 6 (IL-6), IL-10, and IL-17. Real-time RCR and Western blot analyses were used to detect Foxp3, IL-6, IL-10, and IL-17 expression. Moreover, flow cytometry was applied to detect the Th17/Treg ratio and M1/M2 ratio. Results: Compared with the control group, the iliac artery wall of ASO rats showed significant hyperplasia, and the concentrations of cholesterol and triglyceride were significantly increased (P<0.01), indicating the successful establishment of ASO. Moreover, the levels of IL-6 and IL-17 in ASO rats were pronouncedly increased (P<0.05), while the IL-10 level was significantly decreased (P<0.05). In addition to increased IL-6 and IL-17 levels, the mRNA and protein levels of Foxp3 and IL-10 in ASO rats were significantly decreased compared with the control group. The Th17/Treg and M1/M2 ratios in the ASO group were markedly increased (P<0.05). These alternations were also observed in ASO patients. After endovascular surgery (such as percutaneous transluminal angioplasty and arterial stenting), all these changes were significantly improved (P<0.05). Conclusions: The Th17/Treg and M1/M2 ratios were significantly increased in ASO, and surgery can effectively improve the balance of Th17/Treg, and reduce the ratio of M1/M2, and the expression of inflammatory factors.
8.Diagnostic value of 3D fast spin-echo sequence scanning combined with multislice spiral CT in knee cruciate ligament injury
You-Qiang LI ; Hai-Jiao WANG ; Bu-Qi ZHU ; Liang WANG ; Hong QIAN ; Chang-Yin WANG
China Journal of Orthopaedics and Traumatology 2024;37(2):153-158
Objective To explore the potential value of three-dimensional fast spin echo(3D-SPACE)combined with multilayer spiral CT(MSCT)in the diagnosis of knee cruciate ligament injury,to provide a new direction for the optimization of subsequent clinical diagnosis.Methods A total of 120 patients with knee cruciate ligament injury were treated from April 2020 to April 2021,aged from 21 to 68 with an average of(41.52±4.13)years old.For all patients,separate MSCT scanner scans,3D-SPACE sequence scans alone and 3D-SPACE sequence combined with MSCT scans were used.The injury and classifica-tion of the anterior and posterior cruciate ligament of the knee were compared,the length of the anterior-medial bundle and posterolateral bundle and its angle of the knee with the horizontal plane were observed,the diagnostic value of 3 diagnostic methods in knee cruciate ligament injury were determined.Results There was no significant difference between the 3D-SPACE sequence scan alone and the MSCT test alone on the total diagnostic rate and grading total diagnostic rate(P>0.05).The total diagnostic rate and grading total diagnostic rate of 3D-SPACE scan combined with MSCT were significantly higher than those of 3D-SPACE scan or MSCT alone(P<0.05).The 3D-SPACE sequence scan alone and the MSCT detection alone had no signifi-cant difference in the measurement values related to the anterior and posterior cruciate ligaments of the knee joint(P>0.05).3D-SPACE sequence scanning combined with MSCT detection on the knee joint anterior and posterior cruciate ligament related mea-surements were significantly higher than the 3D-SPACE sequence scan or MSCT detection alone(P<0.05).The area under the ROC curve estimated by 3D-SPACE sequence scanning combined with MSCT was 0.960,which was significantly higher than that of 3D-SPACE sequence scanning and MSCT alone evaluating the area under the ROC curve line of 0.756 and 0.795.The com-bined 3D-SPACE sequence scanning and 3D-SPACE sequence scanning MSCT analysis and prediction models were statistically different(Z=2.236,P<0.05),and MSCT alone and 3D-SPACE sequence scanning combined with MSCT analysis and prediction models were statistically different(Z=2.653,P<0.05).Conclusion The application of 3D-SPACE sequence combined with MSCT scanning for knee cruciate ligament injury can improve the diagnosis rate of patients with knee cruciate ligament injury.It can be used as a diagnostic tool for patients with knee cruciate ligament injury and is worthy of clinical application.
9.Design of new type of acupressure wrist-ankle strap and its value for treating mild anxiety insomnia
Ying YUAN ; Wei-Hong LI ; Yan-Li YOU ; Qian-Xi DAI ; Fan-Fu FANG
Chinese Medical Equipment Journal 2024;45(4):78-82
Objective To design a new type of acupressure wrist-ankle strap and evaluate its clinical effect on the treatment of patients with mild anxiety insomnia.Methods The acupressure wrist-ankle strap was composed of a fixation band and an acupressure part.Totally 94 insomnia patients with mild anxiety at some hospital from October 2020 to January 2023 were selected as the subjects and divided into an observation group(n=48)and a control group(n=46)with the random number table method.The observation group was treated with the acupressure wrist-ankle strap,and the control group was given with placebos.The two groups were compared before and after treatment in terms of Pittsburgh sleep quality index(PSQI)and Hamilton anxiety scale(HAMA)with two-way repeated measures ANOVA.SPSS 21.0 software was used for data analysis.Results The PSQI and HAMA scores of the two groups were enhanced significantly after treatment(P<0.05).The two groups had statistically significant difference in the effect of the time factor on PSQI and HAMA scores(P<0.05),and also in the effect of the time x group interaction on PSQI and HAMA scores(P<0.05).Condusion The acupressure wrist-ankle strap contributes to improving the sleep and anxiety of mild anxiety insomnia patients in a self-administered,non-invasive,painless,and non-adverse manner.[Chinese Medical Equipment Journal,2024,45(4):78-82]
10.Discovery of highly potent phosphodiesterase-1 inhibitors by a combined-structure free energy perturbation approach.
Zhe LI ; Mei-Yan JIANG ; Runduo LIU ; Quan WANG ; Qian ZHOU ; Yi-You HUANG ; Yinuo WU ; Chang-Guo ZHAN ; Hai-Bin LUO
Acta Pharmaceutica Sinica B 2024;14(12):5357-5369
Accurate receptor/ligand binding free energy calculations can greatly accelerate drug discovery by identifying highly potent ligands. By simulating the change from one compound structure to another, the relative binding free energy (RBFE) change can be calculated based on the theoretically rigorous free energy perturbation (FEP) method. However, existing FEP-RBFE approaches may face convergence challenges due to difficulties in simulating non-physical intermediate states, which can lead to increased computational costs to obtain the converged results. To fundamentally overcome these issues and accelerate drug discovery, a new combined-structure RBFE (CS-FEP) calculation strategy was proposed, which solved the existing issues by constructing a new alchemical pathway, smoothed the alchemical transformation, increased the phase-space overlap between adjacent states, and thus significantly increased the convergence and accelerated the relative binding free energy calculations. This method was extensively tested in a practical drug discovery effort by targeting phosphodiesterase-1 (PDE1). Starting from a PDE1 inhibitor (compound 9, IC50 = 16.8 μmol/L), the CS-FEP guided hit-to-lead optimizations resulted in a promising lead (11b and its mesylate salt formulation 11b-Mesylate, IC50 = 7.0 nmol/L), with ∼2400-fold improved inhibitory activity. Further experimental studies revealed that the lead showed reasonable metabolic stability and significant anti-fibrotic effects in vivo.


Result Analysis
Print
Save
E-mail