1.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
2.Association between preoperative oxygen reserve index and postoperative pulmonary complications: a prospective observational study
Sangho LEE ; Halin HONG ; Hyojin CHO ; Sang-Wook LEE ; Ann Hee YOU ; Hee Yong KANG ; Sung Wook PARK ; Mi Kyeong KIM ; Jeong-Hyun CHOI
Korean Journal of Anesthesiology 2025;78(3):224-235
Background:
The oxygen reserve index (ORi) noninvasively measures oxygen levels within the mild hyperoxia range. To evaluate whether a degree of increase in the ORi during preoxygenation for general anesthesia is associated with the occurrence of postoperative pulmonary complications (PPCs).
Methods:
We enrolled 154 patients who underwent preoperative pulmonary function tests and were scheduled for elective surgery under general anesthesia. We aimed to measure the increase in ORi during preoxygenation before general anesthesia and analyze its association with PPCs.
Results:
PPCs occurred in 76 (49%) participants. Multivariate logistic regression analysis revealed that the three-minute preoxygenation ORi was significantly associated with PPCs (Odds ratio [OR]: 0.02, 95% CI [0.00–0.16], P < 0.001). The areas under the curve (AUC [95% CI]) in the receiver operating characteristic curve analysis for the three-minute preoxygenation ORi for PPCs were 0.64 (0.55–0.73). After a subgroup analysis, multivariate logistic regression showed that the three-minute preoxygenation ORi was significantly associated with PPCs among patients who underwent thoracic surgery (OR: 0.01, 95% CI [0.00–0.19], P = 0.006). The AUC of the three-minute preoxygenation ORi for PPCs was 0.72 (0.57–0.86) in patients who underwent thoracic surgery.
Conclusions
A low ORi measured after 3 min of preoxygenation for general anesthesia was associated with an increased risk of PPCs, including those undergoing thoracic surgery. This study demonstrated the potential of ORi, measured after oxygen administration, as a tool for evaluating lung function that complements traditional lung function tests and scoring systems.
3.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
4.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
5.Association between preoperative oxygen reserve index and postoperative pulmonary complications: a prospective observational study
Sangho LEE ; Halin HONG ; Hyojin CHO ; Sang-Wook LEE ; Ann Hee YOU ; Hee Yong KANG ; Sung Wook PARK ; Mi Kyeong KIM ; Jeong-Hyun CHOI
Korean Journal of Anesthesiology 2025;78(3):224-235
Background:
The oxygen reserve index (ORi) noninvasively measures oxygen levels within the mild hyperoxia range. To evaluate whether a degree of increase in the ORi during preoxygenation for general anesthesia is associated with the occurrence of postoperative pulmonary complications (PPCs).
Methods:
We enrolled 154 patients who underwent preoperative pulmonary function tests and were scheduled for elective surgery under general anesthesia. We aimed to measure the increase in ORi during preoxygenation before general anesthesia and analyze its association with PPCs.
Results:
PPCs occurred in 76 (49%) participants. Multivariate logistic regression analysis revealed that the three-minute preoxygenation ORi was significantly associated with PPCs (Odds ratio [OR]: 0.02, 95% CI [0.00–0.16], P < 0.001). The areas under the curve (AUC [95% CI]) in the receiver operating characteristic curve analysis for the three-minute preoxygenation ORi for PPCs were 0.64 (0.55–0.73). After a subgroup analysis, multivariate logistic regression showed that the three-minute preoxygenation ORi was significantly associated with PPCs among patients who underwent thoracic surgery (OR: 0.01, 95% CI [0.00–0.19], P = 0.006). The AUC of the three-minute preoxygenation ORi for PPCs was 0.72 (0.57–0.86) in patients who underwent thoracic surgery.
Conclusions
A low ORi measured after 3 min of preoxygenation for general anesthesia was associated with an increased risk of PPCs, including those undergoing thoracic surgery. This study demonstrated the potential of ORi, measured after oxygen administration, as a tool for evaluating lung function that complements traditional lung function tests and scoring systems.
6.Association between preoperative oxygen reserve index and postoperative pulmonary complications: a prospective observational study
Sangho LEE ; Halin HONG ; Hyojin CHO ; Sang-Wook LEE ; Ann Hee YOU ; Hee Yong KANG ; Sung Wook PARK ; Mi Kyeong KIM ; Jeong-Hyun CHOI
Korean Journal of Anesthesiology 2025;78(3):224-235
Background:
The oxygen reserve index (ORi) noninvasively measures oxygen levels within the mild hyperoxia range. To evaluate whether a degree of increase in the ORi during preoxygenation for general anesthesia is associated with the occurrence of postoperative pulmonary complications (PPCs).
Methods:
We enrolled 154 patients who underwent preoperative pulmonary function tests and were scheduled for elective surgery under general anesthesia. We aimed to measure the increase in ORi during preoxygenation before general anesthesia and analyze its association with PPCs.
Results:
PPCs occurred in 76 (49%) participants. Multivariate logistic regression analysis revealed that the three-minute preoxygenation ORi was significantly associated with PPCs (Odds ratio [OR]: 0.02, 95% CI [0.00–0.16], P < 0.001). The areas under the curve (AUC [95% CI]) in the receiver operating characteristic curve analysis for the three-minute preoxygenation ORi for PPCs were 0.64 (0.55–0.73). After a subgroup analysis, multivariate logistic regression showed that the three-minute preoxygenation ORi was significantly associated with PPCs among patients who underwent thoracic surgery (OR: 0.01, 95% CI [0.00–0.19], P = 0.006). The AUC of the three-minute preoxygenation ORi for PPCs was 0.72 (0.57–0.86) in patients who underwent thoracic surgery.
Conclusions
A low ORi measured after 3 min of preoxygenation for general anesthesia was associated with an increased risk of PPCs, including those undergoing thoracic surgery. This study demonstrated the potential of ORi, measured after oxygen administration, as a tool for evaluating lung function that complements traditional lung function tests and scoring systems.
7.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
8.Association between preoperative oxygen reserve index and postoperative pulmonary complications: a prospective observational study
Sangho LEE ; Halin HONG ; Hyojin CHO ; Sang-Wook LEE ; Ann Hee YOU ; Hee Yong KANG ; Sung Wook PARK ; Mi Kyeong KIM ; Jeong-Hyun CHOI
Korean Journal of Anesthesiology 2025;78(3):224-235
Background:
The oxygen reserve index (ORi) noninvasively measures oxygen levels within the mild hyperoxia range. To evaluate whether a degree of increase in the ORi during preoxygenation for general anesthesia is associated with the occurrence of postoperative pulmonary complications (PPCs).
Methods:
We enrolled 154 patients who underwent preoperative pulmonary function tests and were scheduled for elective surgery under general anesthesia. We aimed to measure the increase in ORi during preoxygenation before general anesthesia and analyze its association with PPCs.
Results:
PPCs occurred in 76 (49%) participants. Multivariate logistic regression analysis revealed that the three-minute preoxygenation ORi was significantly associated with PPCs (Odds ratio [OR]: 0.02, 95% CI [0.00–0.16], P < 0.001). The areas under the curve (AUC [95% CI]) in the receiver operating characteristic curve analysis for the three-minute preoxygenation ORi for PPCs were 0.64 (0.55–0.73). After a subgroup analysis, multivariate logistic regression showed that the three-minute preoxygenation ORi was significantly associated with PPCs among patients who underwent thoracic surgery (OR: 0.01, 95% CI [0.00–0.19], P = 0.006). The AUC of the three-minute preoxygenation ORi for PPCs was 0.72 (0.57–0.86) in patients who underwent thoracic surgery.
Conclusions
A low ORi measured after 3 min of preoxygenation for general anesthesia was associated with an increased risk of PPCs, including those undergoing thoracic surgery. This study demonstrated the potential of ORi, measured after oxygen administration, as a tool for evaluating lung function that complements traditional lung function tests and scoring systems.
9.Establishment of Local Diagnostic Reference Levels for Pediatric Neck CT at Nine University Hospitals in South Korea
Jisun HWANG ; Hee Mang YOON ; Jae-Yeon HWANG ; Young Hun CHOI ; Yun Young LEE ; So Mi LEE ; Young Jin RYU ; Sun Kyoung YOU ; Ji Eun PARK ; Seok Kee LEE
Korean Journal of Radiology 2025;26(1):65-74
Objective:
To establish local diagnostic reference levels (DRLs) for pediatric neck CT based on age, weight, and water-equivalent diameter (WED) across multiple university hospitals in South Korea.
Materials and Methods:
This retrospective study analyzed pediatric neck CT examinations from nine university hospitals, involving patients aged 0–18 years. Data were categorized by age, weight, and WED, and radiation dose metrics, including volume CT dose index (CTDIvol) and dose length product, were recorded. Data retrieval and analysis were conducted using a commercially available dose-management system (Radimetrics, Bayer Healthcare). Local DRLs were established following the International Commission on Radiological Protection guidelines, using the 75th percentile as the reference value.
Results:
A total of 1159 CT examinations were analyzed, including 169 scans from Institution 1, 132 from Institution 2, 126 from Institution 3, 129 from Institution 4, 128 from Institution 5, 105 from Institution 6, 162 from Institution 7, 127 from Institution 8, and 81 from Institution 9. Radiation dose metrics increased with age, weight, and WED, showing significant variability both within and across institutions. For patients weighing less than 10 kg, the DRL for CTDIvol was 5.2 mGy. In the 10–19 kg group, the DRL was 5.8 mGy; in the 20–39 kg group, 7.6 mGy; in the 40–59 kg group, 11.0 mGy; and for patients weighing 60 kg or more, 16.2 mGy. DRLs for CTDIvol by age groups were as follows: 5.3 mGy for infants under 1 year, 5.7 mGy for children aged 1–4 years, 7.6 mGy for ages 5–9 years, 11.2 mGy for ages 10–14 years, and 15.6 mGy for patients 15 years or older.
Conclusion
Local DRLs for pediatric neck CT were established based on age, weight, and WED across nine university hospitals in South Korea.
10.Primary Cutaneous CD30+ Lymphoproliferative Disorders in South Korea: A Nationwide, Multi-Center, Retrospective, Clinical, and Prognostic Study
Woo Jin LEE ; Sook Jung YUN ; Joon Min JUNG ; Joo Yeon KO ; Kwang Ho KIM ; Dong Hyun KIM ; Myung Hwa KIM ; You Chan KIM ; Jung Eun KIM ; Chan-Ho NA ; Je-Ho MUN ; Jong Bin PARK ; Ji-Hye PARK ; Hai-Jin PARK ; Dong Hoon SHIN ; Jeonghyun SHIN ; Sang Ho OH ; Seok-Kweon YUN ; Dongyoun LEE ; Seok-Jong LEE ; Seung Ho LEE ; Young Bok LEE ; Soyun CHO ; Sooyeon CHOI ; Jae Eun CHOI ; Mi Woo LEE ; On behalf of The Korean Society of Dermatopathology
Annals of Dermatology 2025;37(2):75-85
Background:
Primary cutaneous CD30+ lymphoproliferative disorders (pcCD30-LPDs) are a diseases with various clinical and prognostic characteristics.
Objective:
Increasing our knowledge of the clinical characteristics of pcCD30-LPDs and identifying potential prognostic variables in an Asian population.
Methods:
Clinicopathological features and survival data of pcCD30-LPD cases obtained from 22 hospitals in South Korea were examined.
Results:
A total of 413 cases of pcCD30-LPDs (lymphomatoid papulosis [LYP], n=237; primary cutaneous anaplastic large cell lymphoma [C-ALCL], n=176) were included. Ninety percent of LYP patients and roughly 50% of C-ALCL patients presented with multiple skin lesions. Both LYP and C-ALCL affected the lower limbs most frequently. Multiplicity and advanced T stage of LYP lesions were associated with a chronic course longer than 6 months. Clinical morphology with patch lesions and elevated serum lactate dehydrogenase were significantly associated with LPDs during follow-up in LYP patients. Extracutaneous involvement of C-ALCL occurred in 13.2% of patients. Lesions larger than 5 cm and increased serum lactate dehydrogenase were associated with a poor prognosis in C-ALCL. The survival of patients with C-ALCL was unaffected by the anatomical locations of skin lesions or other pathological factors.
Conclusion
The multiplicity or size of skin lesions was associated with a chronic course of LYP and survival among patients with C-ALCL.

Result Analysis
Print
Save
E-mail