1.Aucubin alleviates knee osteoarthritis in mice by suppressing the NF‑κB signaling pathway.
Yongxin MAI ; Shuting ZHOU ; Ruijia WEN ; Jinfang ZHANG ; Dongxiang ZHAN
Journal of Southern Medical University 2025;45(10):2104-2110
OBJECTIVES:
To assess the therapeutic effect of aucubin in mice with knee osteoarthritis (KOA) and investigate the underlying mechanism.
METHODS:
Sixty C57BL/6J mice were randomized equally into sham operation group, KOA model group, glucosamine (positive control) treatment group, and low-, medium-, and high-dose aucubin treatment groups (2, 4, and 8 mg/kg, respectively). KOA mouse models were established by transection of the anterior cruciate ligament (ACL), and the treatment was initiated on day 1 postoperatively and administered weekly for 8 weeks. Safranin O-fast green staining, immunohistochemistry, and microCT were used to evaluate the changes in cartilage pathology, inflammatory protein expression, and subchondral bone volume fraction (BV/TV). The expression levesl of COL2, SOX9, p-P65, IL-1β and MMP13 proteins in the cartilage tissues were detected using Western blotting. In a chondrocyte model with IL-1β treatment for mimicking KOA, the effect of aucubin on chondrogenic differentiation was observed with Alcian blue and Safranin O staining, and cellular COL2, SOX9 and TNF‑α mRNA expressions were detected with RT-qPCR.
RESULTS:
Compared with those in the model group, the mouse models receiving aucubin treatment showed significantly upregulated COL2 and SOX9 protein levels and downregulated p-P65, IL-1β and MMP13 expressions in the cartilage tissues. In the IL-1β-induced chondrocyte model, aucubin treatment significantly upregulated the mRNA expressions of SOX9 and COL2 but lowered the mRNA expression of TNF-α. Alcian blue and Safranin O staining confirmed that aucubin promoted the synthesis of cartilage extracellular matrix and enhanced chondrogenic differentiation of the cells.
CONCLUSIONS
Aucubin can effectively alleviate KOA in mice by inhibiting NF‑κB-mediated cartilage inflammation, promoting cartilage matrix synthesis, and improving subchondral bone microstructure.
Animals
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis, Knee/drug therapy*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Iridoid Glucosides/therapeutic use*
;
SOX9 Transcription Factor/metabolism*
;
Chondrocytes/drug effects*
;
Male
;
Interleukin-1beta/metabolism*
;
Matrix Metalloproteinase 13/metabolism*
;
Collagen Type II/metabolism*
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail