1.Interplay Between Interferon Stimulatory Pathways and Organellar Dynamics
Jin-Ru LI ; Yu DUAN ; Xin-Gui DAI ; Yong-Ming YAO
Progress in Biochemistry and Biophysics 2025;52(7):1708-1727
Interferon stimulating factor STING, a transmembrane protein residing in the endoplasmic reticulum, is extensively involved in the sensing and transduction of intracellular signals and serves as a crucial component of the innate immune system. STING is capable of directly or indirectly responding to abnormal DNA originating from diverse sources within the cytoplasm, thereby fulfilling its classical antiviral and antitumor functions. Structurally, STING is composed of 4 transmembrane helices, a cytoplasmic ligand binding domain (LBD), and a C terminal tail structure (CTT). The transmembrane domain (TM), which is formed by the transmembrane helical structures, anchors STING to the endoplasmic reticulum, while the LBD is in charge of binding to cyclic dinucleotides (CDNs). The classical second messenger, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), represents a key upstream molecule for STING activation. Once cGAMP binds to LBD, STING experiences conformational alterations, which subsequently lead to the recruitment of Tank-binding kinase 1 (TBK1) via the CTT domain. This, in turn, mediates interferon secretion and promotes the activation and migration of dendritic cells, T cells, and natural killer cells. Additionally, STING is able to activate nuclear factor-κB (NF-κB), thereby initiating the synthesis and release of inflammatory factors and augmenting the body’s immune response. In recent years, an increasing number of studies have disclosed the non-classical functions of STING. It has been found that STING plays a significant role in organelle regulation. STING is not only implicated in the quality control systems of organelles such as mitochondria and endoplasmic reticulum but also modulates the functions of these organelles. For instance, STING can influence key aspects of organelle quality control, including mitochondrial fission and fusion, mitophagy, and endoplasmic reticulum stress. This regulatory effect is not unidirectional; rather, it is subject to organelle feedback regulation, thereby forming a complex interaction network. STING also exerts a monitoring function on the nucleus and ribosomes, which further enhances the role of the cGAS-STING pathway in infection-related immunity. The interaction mechanism between STING and organelles is highly intricate, which, within a certain range, enhances the cells’ capacity to respond to external stimuli and survival pressure. However, once the balance of this interaction is disrupted, it may result in the occurrence and development of inflammatory diseases, such as aseptic inflammation and autoimmune diseases. Excessive activation or malfunction of STING may trigger an over-exuberant inflammatory response, which subsequently leads to tissue damage and pathological states. This review recapitulates the recent interactions between STING and diverse organelles, encompassing its multifarious functions in antiviral, antitumor, organelle regulation, and immune regulation. These investigations not only deepen the comprehension of molecular mechanisms underlying STING but also offer novel concepts for the exploration of human disease pathogenesis and the development of potential treatment strategies. In the future, with further probing into STING function and its regulatory mechanisms, it is anticipated to pioneer new approaches for the treatment of complex diseases such as inflammatory diseases and tumors.
2.Factors of prognosis of patients with acute myocardial infarction complicated with cardiogenic shock undergoing primary percutaneous coronary intervention under the support of mechanical devices
Ming-Hua LUO ; Yu-Shan CHEN ; He WANG ; Huai-Min GUAN ; Jin-Hong XIE ; Cheng-Jie QIU ; Yong-Hua ZONG ; Sha-Sha SHANG ; Yun-Wei WANG
Chinese Journal of Interventional Cardiology 2024;32(4):197-202
Objective To investigate the factors influencing prognosis in patients with acute myocardial infarction complicated with cardiogenic shock undergoing primary percutaneous coronary intervention(PPCI).Methods Patients with acute myocardial infarction complicated with cardiogenic shock who underwent PPCI at our hospital between January 2015 and December 2019 were enrolled.Clinical baseline characteristics,coronary angiography and PCI-related parameters,and mechanical support information were collected.The patients were followed up for one year and divided into survival and death groups based on their survival status within one year.Differences in various factors between the two groups were compared.Results A total of 40 patients were enrolled,including 26 in the survival group and 14 in the death group.There were no differences in baseline data,diagnosis,risk factors,and comorbidities between the two groups.The survival group had a lower heart rate and higher blood pressure trend at admission compared to the death group.Myocardial enzymes were significantly lower in the survival group compared to the death group(median CK peak:496.00(198.25,2 830.00)U/L vs.3 040.00(405.75,5 626.53)U/L,P=0.003;median CK-MB peak:52.65(31.75,219.50)U/L vs.306.00(27.25,489.63)U/L,P=0.006).When comparing coronary angiography and PCI-related indicators between the two groups,the survival group had a higher rate of complete revascularization compared to the control group(53.85%vs.21.43%,P=0.048).The survival group had a higher proportion of extracorporeal membrane oxygenation(ECMO)combined with intra-aortic balloon pump(IABP)support compared to the control group[38.46%vs.7.14%,P=0.034].Conclusions Survival in patients with acute myocardial infarction complicated with cardiogenic shock undergoing PPCI is associated with lower level of myocardial enzymes,ECMO combined with IABP support and complete revascularization.
3.Design,numerical simulation and experimental study of novel oxygenator
Ming-Hao YUE ; Shi-Yao ZHANG ; Ji-Nian LI ; Hui-Chao LIU ; Zi-Hua SU ; Ya-Wei WANG ; Zeng-Sheng CHEN ; Shi-Hang LIN ; Jin-Yu LI ; Ya-Ke CHENG ; Yong-Fei HU ; Cun-Ding JIA ; Ming-Zhou XU
Chinese Medical Equipment Journal 2024;45(3):23-28
Objective To design a novel oxygenator to solve the existing problems of extracorporeal membrane oxygenation(ECMO)machine in high transmembrane pressure difference,low efficiency of blood oxygen exchange and susceptibility to thrombosis.Methods The main body of the oxygenator vascular access flow field was gifted with a flat cylindrical shape.The topology of the vascular access was modeled in three dimensions,and the whole flow field was cut into a blood inlet section,an inlet buffer,a heat exchange zone,a blood oxygen exchange zone,an outlet buffer and a blood outlet section.The oxygenator was compared with Quadrox oxygenator by means of ANSYS FLUENT-based simulation and prototype experiments.Results Simulation calculations showed the oxygenator designed was comparable to the clinically used ones in general,and gained advantages in transmembrane pressure difference,blood oxygen exchange and flow uniformity.Experimental results indicated that the oxygenator behaved better than Quadrox oxygenator in transmembrane pressure difference and blood oxygen exchange.Conclusion The oxygenator has advantages in transmem-brane pressure difference,temperature change,blood oxygen ex-change and low probability of thrombosis.[Chinese Medical Equipment Journal,2024,45(3):23-28]
4.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
5.Development and Application of a Micro-device for Rapid Detection of Ammonia Nitrogen in Environmental Water
Peng WANG ; Yong TIAN ; Chuan-Yu LIU ; Wei-Liang WANG ; Xu-Wei CHEN ; Yan-Feng ZHANG ; Ming-Li CHEN ; Jian-Hua WANG
Chinese Journal of Analytical Chemistry 2024;52(2):178-186,中插1-中插3
The analysis of ammonia nitrogen in real water samples is challenging due to matrix interferences and difficulties for rapid on-site analysis.On the basis of the standard method,i.e.water quality-determination of ammonia nitrogen-salicylic acid spectrophotometry(HJ 536-2009),a simple device for online detecting ammonia nitrogen was developed using a sequential injection analysis(SIA)system in this work.The ammonia nitrogen transformation system,color reaction system,and detection system were built in compatible with the SIA system,respectively.In particular,the detection system was assembled by employing light-emitting diode as the light source,photodiode as the detector,and polyvinylchloride tube as the cuvette,thus significantly reducing the volume,energy consumption and fabricating cost of the detection system.As a result,the accurate analysis of ammonia nitrogen in complex water samples was achieved.A quantitative detection of ammonia nitrogen in water sample was obtained in 12 min,along with linear range extending to 1000 μmol/L,precisions(Relative standard deviation,RSD)of 4.3%(C=10 μmol/L,n=7)and 4.2%(C=500 μmol/L,n=7),and limit of detection(LOD)of 0.65 μmol/L(S/N=3,n=7).The results of interfering experiments showed that the detection of ammonia nitrogen by the developed device was not interfered by the common coexisting ions and components,therefore the environmental water could be directly analyzed,such as reservoir water,domestic sewage,sea water and leachate of waste landfill.The analytical results were consistent with those obtained by the environmental protection standard method(Water quality determination of ammonia nitrogen-salicylic acid spectrophotometry,HJ 536-2009).In addition,the spiking recoveries were in the range of 92.3%-98.1%,further confirming the accuracy and practicality of the developed device.
6.Effects of Baicalin on the Expressions of JAK1 and STAT3 in Mice with Chronic Atrophic Gastritis
Li-Ying DUAN ; Ming-Yang ZHU ; Yong YU ; Han HAN ; Ye DING
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):200-206
Objective To investigate the repair mechanism of baicalin on gastric mucosa of chronic atrophic gastritis mice based on the network pharmacology and animal experiments.Methods(1)Applied network pharmacology to predict and analyze the potential key targets of baicalin in the treatment of chronic atrophic gastritis.(2)Animal experiment:40 C57BL/6N mice were randomly divided into normal group,model group,Vitacoenzyme group and baicalin group,10 mice in each group.Except for the normal group,the other three groups of mice were treated with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)by gavage combined with hunger and satiety disorder method to construct a chronic atrophic gastritis model.At the end of drug administration,the histopathological changes of gastric mucosa were observed by hematoxylin-eosin(HE)staining,the changes of gastrin(GAS)and prostaglandin E2(PGE2)levels in serum were detected by enzyme-linked immunosorbent assay(ELISA),and the mRNA and protein expression levels of Janus tyrosine kinase 1(JAK1),signal transducer and activator of transcription 3(STAT3)in the gastric mucosa were detected by real-time fluorescence quantitative polymerase chain reaction(qRT-PCR)and protein immunoblotting(Western Blot)methods,respectively.Results The results of network pharmacology showed that baicalin could spontaneously bind to the core targets JAK1 and STAT3.The results of animal experiments showed that compared with the normal group,the gastric mucosa of mice in the model group suffered from atrophy,disordered gland arrangement,the presence of a large number of lymphocytes,a significant increase in apoptotic index of the gastric mucosa(P<0.05),a significant decrease in the levels of GAS and PGE2 in serum(P<0.05),and a significant increase in the levels of mRNA and protein expressions of JAK1 and STAT3 in the gastric mucosa(P<0.05);compared with the model group,the pathological changes of gastric mucosa in the Vitacoenzyme group and baicalin group were alleviated,the glands were arranged relatively neatly,the structure was more intact,the apoptosis index of gastric mucosal cells was significantly decreased(P<0.05),the levels of GAS and PGE2 in serum were significantly increased(P<0.05),and the mRNA and protein expression levels of JAK1 and STAT3 in gastric mucosa were significantly decreased(P<0.05).There was no significant difference in the above-mentioned indexes between the baicalin group and the Vitacoenzyme group(P>0.05).Conclusion Baicalin can effectively repair gastric mucosal lesions in mice with chronic atrophic gastritis,and its mechanism may be related to the down-regulation of mRNA and protein expressions of JAK1 and STAT3.
7.Simultaneous content determination of seventeen constituents in Yangxue Ruanjian Capsules by UPLC-MS/MS
Yong-Ming LIU ; Shu-Sen LIU ; Yi-Zhe XIONG ; Xiang WANG ; Yu-Yun WU ; Jin LIU ; Ling-Yun PAN ; Guo-Qing DU ; Hong-Sheng ZHAN
Chinese Traditional Patent Medicine 2024;46(2):353-358
AIM To establish a UPLC-MS/MS method for the simultaneous content determination of liquiritin apioside,alibiflorin,swertiamarin,methyl gallate,benzoylpaeoniflorin,sweroside,6′-O-β-D-glucosylgentiopicroside,isoliquiritigenin,loganic acid,liquiritigenin,gallic acid,paeoniflorin,oxypaeoniflorin,gentiopicroside,glycyrrhizic acid,isoliquiritoside and liquiritin in Yangxue Ruanjian Capsules.METHODS The analysis was performed on a 40℃thermostatic Waters BEH C18column(2.1 mm×100 mm,1.7 μm),with the mobile phase comprising of 2 mmol/L ammonium acetate(containing 0.1%formic acid)-acetonitrile flowing at 0.3 mL/min in a gradient elution manner,and electron spray ionization source was adopted in negative ion scanning with multiple reaction monitoring mode.RESULTS Seventeen constituents showed good linear relationships within their own ranges(r>0.999 6),whose average recoveries were 91.33%-104.03%with the RSDs of 1.58%-3.50%.CONCLUSION This rapid,accurate and stable method can be used for the quality control of Yangxue Ruanjian Capsules.
8.Mechanism of Yi Sui Sheng Xue Fang in improving renal injury induced by chemotherapy in mice based on Keap1/Nrf2 signaling pathway
Yu LIU ; Li-Ying ZHANG ; Ya-Feng QI ; Yang-Yang LI ; Shang-Zu ZHANG ; Qian XU ; Guo-Xiong HAO ; Fan NIU ; Yong-Qi LIU ; Zhi-Ming ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(5):703-707
Objective To study the effect and mechanism of action of Yi Sui Sheng Xue Fang(YSSX)in ameliorating chemotherapy-induced renal injury in mice through The Kelch-like ECH-associated protein 1(KEAP1)/Nuclear factor erythroid-derived 2-like 2(NRF2)signalling pathway.Methods A mouse kidney injury model was induced by intraperitoneal injection of carboplatin(40 mg·kg-1).C57BL/6 mice were randomly divided into blank group(0.9%NaCl),model group(kidney injury model)and experimental-L,experimental-M,experimental-H groups(0.53,1.05 and 2.10 g·kg-1·d-1 YSSX by gavage for 7 d).Keap1 and Nrf2 were determined by Western blot;superoxide dismutase(SOD)and malondialdehyde(MDA)activities were determined by spectrophotometry.Results The protein expression levels of Keap1 in blank group,model group and experimental-L,experimental-M,experimental-H groups were 0.26±0.02,0.64±0.03,0.59±0.01,0.45±0.05 and 0.34±0.02;the protein expression levels of Nrf2 were 0.69±0.06,0.35±0.01,0.36±0.01,0.48±0.02 and 0.56±0.01;the enzyme activities of catalase(CAT)were(572.49±912.92),(334.60±4.92),(402.76±9.80),(475.35±5.21)and(493.00±12.03)U·mg-1;glutathione(GSH)were(2.79±0.06),(0.51±0.01),(0.59±0.07),(1.29±0.04)and(1.70±0.08)μmol·L1;SOD were(477.00±4.32),(260.67±6.13),(272.67±2.87),(386.33±3.68)and(395.00±12.25)U·mL-1;MDA were(3.89±0.02),(7.32±0.03),(6.94±0.14),(4.60±0.01)and(4.34±0.02)nmol·mg prot-1.The differences of the above indexes in the model group compared with the blank group were statistically significant(P<0.01,P<0.001);the differences of the above indexes in experimental-M,experimental-H groups compared withe model group were statistically significant(P<0.01,P<0.001).Conclusion YSSX can activate Keap1/Nrf2 signaling pathway and regulate the oxidative stress state of the organism,thus improving the renal injury caused by chemotherapy in mice.
9.Pathological mechanism of hypoxia-inducible factor-1α in tumours and the current status of research on Chinese medicine intervention
Yu LIU ; Li-Ying ZHANG ; Guo-Xiong HAO ; Ya-Feng QI ; Qian XU ; Ye-Yuan LIU ; Chao YUAN ; Peng ZHU ; Yong-Qi LIU ; Zhi-Ming ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(11):1670-1674
Traditional Chinese medicine can regulate the hypoxia-inducible factor-1α(HIF-1α)signalling pathway and slow down tumour progression mainly by inhibiting tumour angiogenesis,glycolysis,epithelial mesenchymal transition and other pathological processes.This paper,starting from HIF-1α and related factors,reviews its pathological mechanism in tumours and the research of traditional Chinese medicine interventions with the aim of providing theoretical references for the treatment of tumours with traditional Chinese medicine.
10.Establishment and evaluation of a rapid PCR-colloidal gold test strip method for the detection of Fritillaria ussuriensis
Yu-he MA ; Cong-hui SHANG ; Qiu-he MA ; Tao LI ; Yue LIU ; Bei-zhen PAN ; Li-jun GAO ; Ming-cheng LI ; Wei XIA ; Yong-mei QU
Acta Pharmaceutica Sinica 2024;59(6):1773-1778
This study design of specific identification primers for the ITS2 sequence of

Result Analysis
Print
Save
E-mail