1.Construction of A Nomogram Prognostic Model Based on Pretreatment Inflammatory Indicator for Esophageal Squamous Cell Carcinoma Patients Treated with Radical Radiotherapy
Shenbo FU ; Long JIN ; Jing LIANG ; Junjun GUO ; Yu CHE ; Chenyang LI ; Yong CHEN
Cancer Research on Prevention and Treatment 2025;52(2):142-150
Objective To describe the significance of the pretreatment inflammatory indicators in predicting the prognosis of patients with esophageal squamous cell carcinoma (ESCC) after undergoing radical radiotherapy. Methods The data of 246 ESCC patients who underwent radical radiotherapy were retrospectively collected. Receiver operating characteristic (ROC) curves were drawn to determine the optimal cutoff values for platelet-lymphocyte ratio (PLR), neutrophil-lymphocyte ratio (NLR), and systemic immune-inflammation index (SII). The Kaplan-Meier method was used for survival analysis. We conducted univariate and multivariate analyses by using the Cox proportional risk regression model. Software R (version 4.2.0) was used to create the nomogram of prognostic factors. Results The results of the ROC curve analysis showed that the optimal cutoff values of PLR, NLR, and SII were 146.06, 2.67, and 493.97, respectively. The overall response rates were 77.6% and 64.5% in the low and high NLR groups, respectively (P<0.05). The results of the Kaplan-Meier survival analysis revealed that the prognosis of patients in the low PLR, NLR, and SII group was better than that of patients in the high PLR, NLR, and SII group (all P<0.05). The results of the multivariate Cox regression analysis showed that gender, treatment modalities, T stage, and NLR were independent factors affecting the overall survival (OS). In addition, T stage and NLR were independent factors affecting the progression-free survival (PFS) (all P<0.05). The nomogram models of OS and PFS prediction were established based on multivariate analysis. The C-index values were 0.703 and 0.668. The calibration curves showed excellent consistency between the predicted and observed OS and PFS. Conclusion The pretreatment values of PLR, NLR, and SII are correlated with the prognosis of patients with ESCC who underwent radical radiotherapy. Moreover, NLR is an independent factor affecting the OS and PFS of ESCC patients. The NLR-based nomogram model has a good predictive ability.
2.Application of Yttrium-90 microsphere selective internal radiation therapy in downstaging and conversion of hepatocellular carcinoma: a case report
Ziwei LIANG ; Tiantian ZHANG ; Yong LIAO ; Xin HUANG ; Bin LIANG ; Zhongbin HANG ; Yan ZHANG ; Lin ZHANG ; Xiaobin FENG ; Li HUO
Chinese Journal of Clinical Medicine 2025;32(1):41-45
This case report describes a 68-year-old male patient diagnosed with primary hepatocellular carcinoma (HCC). After receiving Yttrium-90 microsphere selective internal radiation therapy (90Y-SIRT), the tumor significantly reduced in size, and tumor markers alpha fetoprotein (AFP) and abnormal prothrombin (PIVKA-Ⅱ) decreased. Postoperative pathological results showed minimal residual tumor cells, indicating that 90Y-SIRT has good efficacy and safety in downstaging and conversion of HCC, thereby facilitating subsequent surgical resection.
3.Effects of anesthesia and surgery on the expression of Alzheimer’s disease-related proteins in the hippocampus of 5×FAD mice and its sex differences
Yinglin ZHANG ; Yong HUANG ; Li ZHANG ; Chao LIANG
Chinese Journal of Clinical Medicine 2025;32(3):493-499
Objective To investigate the impact of anesthesia and surgery on hippocampal expression of Alzheimer’s disease (AD)-associated proteins in 5×FAD transgenic mice and explore potential sex differences. Methods 5×FAD mice were crossbred with C57BL/6J wild-type (WT) mice to generate offspring for genotypic confirmation. Four-month-old 5×FAD mice and littermate (LM) WT controls were allocated into 8 experimental groups (n=8/group): female/male 5×FAD control group, female/male 5×FAD anesthesia/surgery group, female/male LM control group, and female/male LM anesthesia/surgery group. Anesthesia/surgery groups underwent laparotomy under 1.4% isoflurane anesthesia, while control groups received no intervention. Hippocampal tissues were collected 24 hours post-procedure for Western blotting analysis of β-catenin, glycogen synthase kinase 3 beta (GSK3β), and phosphorylated GSK3β (p-GSK3β) levels. Results Female 5×FAD mice demonstrated significant reductions in β-catenin levels and p-GSK3β expression compared to both sex-matched LM controls and male 5×FAD counterparts (P<0.05). No significant differences in these proteins were observed in male 5×FAD mice following anesthesia/surgery. Conclusions These findings reveal sex-specific responses to perioperative stress in AD, suggesting that anesthesia and surgery may affect female AD patients through hippocampal β-catenin/GSK3β pathway modulation.
4.Study on Kinetic and Static Tasks With Different Resistance Coefficients in Post-stroke Rehabilitation Training Based on Functional Near-infrared Spectroscopy
Ling-Di FU ; Jia-Xuan DOU ; Ting-Ting YING ; Li-Yong YIN ; Min TANG ; Zhen-Hu LIANG
Progress in Biochemistry and Biophysics 2025;52(7):1890-1903
ObjectiveFunctional near-infrared spectroscopy (fNIRS), a novel non-invasive technique for monitoring cerebral activity, can be integrated with upper limb rehabilitation robots to facilitate the real-time assessment of neurological rehabilitation outcomes. The rehabilitation robot is designed with 3 training modes: passive, active, and resistance. Among these, the resistance mode has been demonstrated to yield superior rehabilitative outcomes for patients with a certain level of muscle strength. The control modes in the resistance mode can be categorized into dynamic and static control. However, the effects of different control modes in the resistance mode on the motor function of patients with upper limb hemiplegia in stroke remain unclear. Furthermore, the effects of force, an important parameter of different control modes, on the activation of brain regions have rarely been reported. This study investigates the effects of dynamic and static resistance modes under varying resistance levels on cerebral functional alterations during motor rehabilitation in post-stroke patients. MethodsA cohort of 20 stroke patients with upper limb dysfunction was enrolled in the study, completing preparatory adaptive training followed by 3 intensity-level tasks across 2 motor paradigms. The bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM) were examined in both the resting and motor training states. The lateralization index (LI), phase locking value (PLV), network metrics were employed to examine cortical activation patterns and topological properties of brain connectivity. ResultsThe data indicated that both dynamic and static modes resulted in significantly greater activation of the contralateral M1 area and the ipsilateral PM area when compared to the resting state. The static patterns demonstrated a more pronounced activation in the contralateral M1 in comparison to the dynamic patterns. The results of brain network analysis revealed significant differences between the dynamic and resting states in the contralateral PFC area and contralateral M1 area (F=4.709, P=0.038), as well as in the contralateral PM area and ipsilateral M1 area (F=4.218, P=0.049). Moreover, the findings indicated a positive correlation between the activation of the M1 region and the increase in force in the dynamic mode, which was reversed in the static mode. ConclusionBoth dynamic and static resistance training modes have been demonstrated to activate the corresponding brain functional regions. Dynamic resistance modes elicit greater oxygen changes and connectivity to the region of interest (ROI) than static resistance modes. Furthermore, the effects of increasing force differ between the two modes. In patients who have suffered a stroke, dynamic modes may have a more pronounced effect on the activation of exercise-related functional brain regions.
5.Research status of Chinese medicine in improving diabetic cardiomyopathy by regulating cellular autophagy
Lei LIU ; Li-Xia YANG ; Yong-Lin LIANG ; Xiang-Dong ZHU ; Yan-Kui GAO
The Chinese Journal of Clinical Pharmacology 2024;40(10):1530-1534
The pathogenesis of diabetic cardiomyopathy(DCM)is complex.Autophagy plays a pivotal role in the development of DCM,and whether its level is stable or not is closely related to the development of the course of DCM.Numerous active components found in traditional Chinese medicines and compound formulations have demonstrated the ability to modulate autophagy levels.These interventions occur through various mechanisms,such as hypoglycemic,anti-apoptotic,anti-inflammatory,and anti-oxidative stress pathways.By mitigating autophagy-induced myocardial damage,enhancing cardiac function,and slowing the progression of DCM,these compounds offer promising avenues for DCM management.This paper aims to consolidate and present research findings from the last 5 years.Our goal is to provide valuable insights and references for the research,development,and clinical application of Chinese medicine in the context of combating DCM.
6.Imaging of lung cancer with molecular beacons delivered by octreotide-modified chitosan nanoparticles
Xue MA ; Jing WU ; Hongli ZHANG ; Yong LI ; Juan SONG ; Yuanli LI ; Liang LU ; Haizhen ZHU
Tianjin Medical Journal 2024;52(1):61-67
Objective To investigate the identification of octreotide(OCT)modified chitosan(CS)miR-155 molecular beacon nanoparticles(CS-miR-155-MB-OCT)and imaging of lung cancer cells for the early screening of lung cancer.Methods A nude mouse model of lung transplantation tumor was established by injecting A549 lung cancer cells into tail veins to establish lung xenograft models.Cre adenovirus was injected through nasal cavity,and mice were killed at 4,6,8 and 12 weeks after adenovirus injection to establish lung cancer models of atypical hyperplasia,adenoma,carcinoma in situ and adenocarcinoma of lung in LSL K-ras G12D transgenic mice at different pathological stages.Lung tissue samples were taken and observed by HE staining.Immunohistochemistry were used to detect the expression of somatostatin receptor 2(SSTR2).Real-time fluorescence quantitative PCR was used to detect miR-155 expression levels in lung xenograft models and transgenic mice at different stages of lung cancer.Then CS-miR-155-MB and CS-miR-155-MB-OCT were injected via tail vein in lung xenograft models.CS-miR-155-MB-OCT was injected via tail vein in transgenic mice models.The fluorescence signals of lung in nude mice and transgenic mice at different disease stages were imaged by living imaging system.Frozen slices of lung tissue were made.The source of fluorescence signal was detected by laser confocal scanning microscope(CLSM).Results HE staining showed that lung transplantation tumor models and lung cancer models of atypical hyperplasia,adenoma,carcinoma in situ and lung adenocarcinoma at different pathological stages were successfully constructed.Immunohistochemical analysis showed somatostatin receptor 2(SSTR2)was expressed in transplanted lung tumor and tissue at different pathological stages.In transgenic mouse models,the expression of miR-155 was gradually increased as the disease progressed(P<0.05).In lung xenograft models,the fluorescence signals were significantly higher in the CS-miR-155-MB-OCT group than those of the CS-miR-155-MB group(P<0.05).In transgenic mouse models,the fluorescence signals gradually increased with the gradual progression of lesions(P<0.05).After re-imaging the lung tissue,it was found that the fluorescence signal came from lung,and CLSM showed that the fluorescence signal came from cancer cells and some normal alveolar epithelial cells.Conclusion CS-miR-155-MB-OCT can dynamically reflect the occurrence and development of lung cancer according to changes of different fluorescence intensity,thus providing a new technology for the early diagnosis of lung cancer.
8.Protective Effects of Danmu Extract Syrup on Acute Lung Injury Induced by Lipopolysaccharide in Mice through Endothelial Barrier Repair.
Han XU ; Si-Cong XU ; Li-Yan LI ; Yu-Huang WU ; Yin-Feng TAN ; Long CHEN ; Pei LIU ; Chang-Fu LIANG ; Xiao-Ning HE ; Yong-Hui LI
Chinese journal of integrative medicine 2024;30(3):243-250
OBJECTIVE:
To investigate the effects of Danmu Extract Syrup (DMS) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the mechanism.
METHODS:
Seventy-two male Balb/C mice were randomly divided into 6 groups according to a random number table (n=12), including control (normal saline), LPS (5 mg/kg), LPS+DMS 2.5 mL/kg, LPS+DMS 5 mL/kg, LPS+DMS 10 mL/kg, and LPS+Dexamethasone (DXM, 5 mg/kg) groups. After pretreatment with DMS and DXM, the ALI mice model was induced by LPS, and the bronchoalveolar lavage fluid (BALF) were collected to determine protein concentration, cell counts and inflammatory cytokines. The lung tissues of mice were stained with hematoxylin-eosin, and the wet/dry weight ratio (W/D) of lung tissue was calculated. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1 β in BALF of mice were detected by enzyme linked immunosorbent assay. The expression levels of Claudin-5, vascular endothelial (VE)-cadherin, vascular endothelial growth factor (VEGF), phospho-protein kinase B (p-Akt) and Akt were detected by Western blot analysis.
RESULTS:
DMS pre-treatment significantly ameliorated lung histopathological changes. Compared with the LPS group, the W/D ratio and protein contents in BALF were obviously reduced after DMS pretreatment (P<0.05 or P<0.01). The number of cells in BALF and myeloperoxidase (MPO) activity decreased significantly after DMS pretreatment (P<0.05 or P<0.01). DMS pre-treatment decreased the levels of TNF-α, IL-6 and IL-1 β (P<0.01). Meanwhile, DMS activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and reversed the expressions of Claudin-5, VE-cadherin and VEGF (P<0.01).
CONCLUSIONS
DMS attenuated LPS-induced ALI in mice through repairing endothelial barrier. It might be a potential therapeutic drug for LPS-induced lung injury.
Mice
;
Male
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Lipopolysaccharides
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Interleukin-1beta/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Claudin-5/metabolism*
;
Acute Lung Injury/chemically induced*
;
Lung/pathology*
;
Interleukin-6/metabolism*
;
Drugs, Chinese Herbal
9.Meta-analysis of the clinical efficacy of low-concentrations atropine in controlling adolescent myopia
Zhidong JIANG ; Lian CHENG ; Yong ZHANG ; Lei LIANG ; Jinting RUAN ; Yanfei HUANG ; Liangliang LI
International Eye Science 2024;24(11):1784-1794
AIM: To systematically evaluate the efficacy and safety of low-concentrations atropine eye drops in controlling adolescent myopia.METHODS:A computer search was conducted on Wanfang Data, CNKI, VIP, PubMed, Cochrane Library, and Embase databases from January 2010 to March 2024 on clinical studies on low-concentration atropine eye drops for controlling adolescent myopia. Two researchers independently screened trials, extracted data, evaluated risk of bias and quality, and used Review Manager5.4 software to perform Meta-analysis.RESULTS:A total of 17 articles, involving 3 764 cases and 3 952 eyes, were included. The Meta-analysis showed that compared with the control group, low concentrations of atropine could effectively slow down the growth of axial length [MD=-0.15, 95% CI(-0.20, -0.10), P<0.00001], significantly controlled the changes in spherical equivalent [MD=0.39, 95% CI(0.29, 0.48), P<0.00001], and had a significant effect on pupil diameter [MD=0.80, 95% CI(0.33,1.28), P=0.0010] and amplitude of accommodation [MD=-2.54, 95%CI(-4.49, -0.60), P=0.01].CONCLUSION:Low-concentrations atropine are effective in controlling spherical equivalent and axial length of myopia in adolescents, significantly affecting pupil diameter and amplitude of accommodation, and effectively delaying the progression of myopia.
10.Establishment and evaluation methods of a novel animal model of liver depression transforming into fire syndrome-related depression
Dan SU ; Jian LI ; Gen-hua ZHU ; Ming YANG ; Liang-liang LIAO ; Zhi-fu AI ; Hui-zhen LI ; Ya-li LIU ; Yong-gui SONG
Acta Pharmaceutica Sinica 2024;59(6):1680-1690
Through a compound induction method, combined with neurobehavioral, macroscopic characterization and objective pathological evaluation indicators, a murine depression model of liver depression transforming into fire syndrome was constructed and confirmed. The model was constructed using a combination of sleep deprivation, light exposure, and alternate-day food deprivation. Evaluation was conducted at three levels: face validity, constructs validity, and predictive validity. The establishment of the liver depression transforming into fire syndrome depression model was further validated through the counterproof of traditional Chinese medicine formulas. In terms of face validity, compared to the control group, mice in the model group exhibited typical depressive symptoms in neurobehavioral assessments; the general observation of the model group mice reveals disheveled and lackluster fur, along with delayed and easily agitated responses. Additionally, there is a substantial increase in water consumption. In the sleep phase detection of mouse, the model group showed a significant increase in the proportion of time spent in the wake phase during sleep, accompanied by a significant decrease in the proportions of time spent in both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep phases. There are significant differences in physiological indicators such as average blood flow velocity, blood flow rate, tongue, urine, and claw color (r values) in the internal carotid artery. Structural validity demonstrated that levels of 5-hydroxytryptamine (5-HT), dopamine (DA), and

Result Analysis
Print
Save
E-mail