1.Outcome indicators in randomized controlled trials of traditional Chinese medicine treatment of post-stroke depression.
Jin HAN ; Yue YUAN ; Fang-Biao XU ; Yan-Bo SONG ; Yong-Kang SUN ; Xin-Zhi WANG
China Journal of Chinese Materia Medica 2025;50(2):542-559
This study systematically reviewed the randomized controlled trial(RCT) of traditional Chinese medicine(TCM) treatment of post-stroke depression(PSD) and analyzed the clinical study characteristics and outcome indicators, aiming to optimize the design and establish the core outcome set in the future clinical trials of the TCM treatment of PSD. PubMed, Web of Science, Cochrane Library, EMbase, CNKI, VIP, Wanfang, and SinoMed were searched for the relevant RCT published in recent 3 years. The basic characteristics, intervention measures, and outcome indicators of the included RCT were extracted, and the descriptive analysis was carried out. A total of 76 RCTs were eventually included, with the sample size concentrated in 80-100 cases. The most frequent TCM syndromes were liver depression and Qi stagnation(15 times, 31.91%) and phlegm combined with stasis(5 times, 10.63%). The frequency of intervention methods followed a descending trend of TCM decoction(35 times, 46.05%) and TCM decoction + acupuncture(4 times, 5.26%), Chinese patent medicine(3 times, 3.94%), and the intervention mainly lasted for 1 to 3 months(43 times, 60.56%). The adverse reactions of patients were mainly digestive system reaction(150 patients, 39.37%) and nervous system reaction(112 patients, 29.39%). Most of the included studies had unclear risk of bias, involving 84 outcome indicators, which belonged to 8 indicator domains. The RCTs of TCM treatment of PSD showed a variety of problems, such as non-standard TCM syndrome differentiation, inconsistent names of TCM syndrome scores and measurement tools, low quality, unclear risk of bias, neglect of endpoint indicators, unreasonable selection of substitute indicators, lack of differentiation between primary and secondary outcome indicators, non-standard reporting of safety indicators, insufficient attention to economic indicators, and lack of long-term prognosis evaluation. It is suggested that the future research should improve the quality of methodology and build a standardized core outcome set to promote the development of high-quality clinical research in this field.
Humans
;
Randomized Controlled Trials as Topic
;
Drugs, Chinese Herbal/administration & dosage*
;
Stroke/psychology*
;
Depression/etiology*
;
Treatment Outcome
;
Medicine, Chinese Traditional
2.Network Meta-analysis of efficacy of different Chinese medicine injections in treating transient ischemic attack.
Jin HAN ; Yong-Kang SUN ; Yue YUAN ; Fang-Biao XU ; Yan-Bo SONG ; Wei-Jie WANG ; Xin-Zhi WANG
China Journal of Chinese Materia Medica 2025;50(8):2282-2297
This study aims to evaluate the efficacy of Chinese medicine injections in treating transient ischemic attack(TIA) based on network Meta-analysis. Randomized controlled trial(RCT) about Chinese medicine injections in treating TIA were retrieved from PubMed, Web of Science, Cochrane Library, EMbase, CNKI, VIP, Wanfang, and SinoMed with the time interval from inception to March 1, 2024. The methodological quality of the included articles was assessed by ROB 2.0, and the GRADE system was employed to evaluate the quality of evidence. The gemtc package of R 4.1.2 was used to perform the network Meta-analysis. Finally, 63 RCTs with a total sample size of 5 750 cases were included, involving 11 Chinese medicine injections(Shuxuetong Injection, Danhong Injection, Shuxuening Injection, Ginkgo Damo Injection, Shenxiong Glucose Injection, Ligustrazine Injection, Salviae Miltiorrhizae and Ligustrazine Hydrochloride Injection, Salvianolic Acids for Injection, Dengzhan Xixin Injection, Guhong Injection, and Xueshuantong Injection). All patients received conventional western medicine treatment, and the experimental group was additionally treated with Chinese medicine injection. Network Meta-analysis yielded the following results.(1) In terms of improving the clinical total response rate, 11 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Dengzhan Xixin Injection + conventional western medicine had the best effect.(2) In terms of reducing plasma viscosity, 7 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Shenxiong Glucose Injection + conventional western medicine had the best effect.(3) In terms of reducing whole blood high shear viscosity, 6 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Guhong Injection + conventional western medicine had the best effect.(4) In terms of reducing whole blood low shear viscosity, 6 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Shuxuening Injection + conventional western medicine had the best effect.(5) In terms of reducing fibrinogen, 9 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Ginkgo Damo Injection + conventional western medicine had the best effect.(6) In terms of increasing the average blood flow velocity, 3 Chinese medicine injections combined with conventional western medicine outperformed conventional western medicine alone, and Shuxuening Injection + conventional western medicine had the best effect. In summary, compared with conventional western medicine alone, Chinese medicine injections combined with conventional western medicine were effective in improving the clinical total response rate and the average blood flow velocity, as well as reducing plasma viscosity, whole blood high shear viscosity, whole blood low shear viscosity, and fibrinogen. However, due to the limited quality and quantity of the included articles, the above conclusions need to be verified by more high-quality, multi-center, and large-sample RCT.
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Injections
;
Ischemic Attack, Transient/drug therapy*
;
Randomized Controlled Trials as Topic
;
Treatment Outcome
3.Quality evaluation of Bidentis Herba derived from different original plants based on HPLC fingerprints, characteristic chromatograms, multi-component content determination combined with chemical pattern recognition.
Guo-Li SHI ; Yun MA ; Feng-Xia SHEN ; Han-Wen DU ; Cong-Min LIU ; Rui-Xia WEI ; Yan-Fang LI ; Jian-Wei FAN ; Yong-Xia GUAN
China Journal of Chinese Materia Medica 2025;50(15):4284-4292
This study established the HPLC fingerprints, characteristic chromatograms, and a multi-component content determination method for Bidens bipinnata and B. biternata. The chemical pattern recognition analysis was then employed to clarify the characteristic indexes of quality differences between the two original plants of Bidentis Herba, providing a reference for establishing the quality standards of Bidentis Herba. HPLC was launched on an Agilent Poroshell 120 EC-C_(18) chromatographic column(4.6 mm×250 mm, 4 μm) by gradient elution with a mobile phase of 0.1% aqueous phosphoric acid-acetonitrile at a flow rate of 0.7 mL·min~(-1), detection wavelength of 270 nm, column temperature of 25 ℃, and an injection volume of 5 μL. The similarity between the fingerprints of 18 batches of Bidentis Herba samples and the common pattern(R) ranged from 0.572 to 0.933. A total of 23 chromatographic peaks were calibrated. Through comparison with the reference substances, six components(neochlorogenic acid, chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, rutin, and hyperoside) were identified and subjected to quantitative analysis. The characteristic fingerprints of B. bipinnata and B. biternata were calibrated with 20 and 17 characteristic peaks, respectively. Among them, peaks 8, 9, 22, and 23 were the characteristic peaks of B. bipinnata, and peak 7 was the characteristic peak of B. biternata, which can be used to distinguish the two original plants of Bidentis Herba. The relative standard deviation of the content of the above-mentioned six components ranged from 36% to 123%. The cluster analysis, principal component analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) classified the 18 batches of Bidentis Herba samples into two categories. Additionally, through the analysis of variable importance in projection(VIP) under OPLS-DA, three characteristic indexes, rutin, isochlorogenic acid A, and isochlorogenic acid B, were identified. The analytical method established in this study can comprehensively evaluate the consistency of Bidentis Herba samples derived from different original plants, specifically identify the differential components between them, and effectively distinguish the two original plants of Bidentis Herba, providing a basis for the differentiation between different original plants and the quality control of Bidentis Herba.
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Bidens/chemistry*
4.Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells.
Yi WANG ; Xiao-Yu SUN ; Fang-Qi MA ; Ming-Ming REN ; Ruo-Han ZHAO ; Meng-Meng QIN ; Xiao-Hong ZHU ; Yan XU ; Ni-da CAO ; Yuan-Yuan CHEN ; Tian-Geng DONG ; Yong-Fu PAN ; Ai-Guang ZHAO
Journal of Integrative Medicine 2025;23(3):320-332
OBJECTIVE:
Gastric cancer (GC) is one of the most common malignancies seen in clinic and requires novel treatment options. Morin is a natural flavonoid extracted from the flower stalk of a highly valuable medicinal plant Prunella vulgaris L., which exhibits an anti-cancer effect in multiple types of tumors. However, the therapeutic effect and underlying mechanism of morin in treating GC remains elusive. The study aims to explore the therapeutic effect and underlying molecular mechanisms of morin in GC.
METHODS:
For in vitro experiments, the proliferation inhibition of morin was measured by cell counting kit-8 assay and colony formation assay in human GC cell line MKN45, human gastric adenocarcinoma cell line AGS, and human gastric epithelial cell line GES-1; for apoptosis analysis, microscopic photography, Western blotting, ubiquitination analysis, quantitative polymerase chain reaction analysis, flow cytometry, and RNA interference technology were employed. For in vivo studies, immunohistochemistry, biomedical analysis, and Western blotting were used to assess the efficacy and safety of morin in a xenograft mouse model of GC.
RESULTS:
Morin significantly inhibited the proliferation of GC cells MKN45 and AGS in a dose- and time-dependent manner, but did not inhibit human gastric epithelial cells GES-1. Only the caspase inhibitor Z-VAD-FMK was able to significantly reverse the inhibition of proliferation by morin in both GC cells, suggesting that apoptosis was the main type of cell death during the treatment. Morin induced intrinsic apoptosis in a dose-dependent manner in GC cells, which mainly relied on B cell leukemia/lymphoma 2 (BCL-2) associated agonist of cell death (BAD) but not phorbol-12-myristate-13-acetate-induced protein 1. The upregulation of BAD by morin was due to blocking the ubiquitination degradation of BAD, rather than the transcription regulation and the phosphorylation of BAD. Furthermore, the combination of morin and BCL-2 inhibitor navitoclax (also known as ABT-737) produced a synergistic inhibitory effect in GC cells through amplifying apoptotic signals. In addition, morin treatment significantly suppressed the growth of GC in vivo by upregulating BAD and the subsequent activation of its downstream apoptosis pathway.
CONCLUSION
Morin suppressed GC by inducing apoptosis, which was mainly due to blocking the ubiquitination-based degradation of the pro-apoptotic protein BAD. The combination of morin and the BCL-2 inhibitor ABT-737 synergistically amplified apoptotic signals in GC cells, which may overcome the drug resistance of the BCL-2 inhibitor. These findings indicated that morin was a potent and promising agent for GC treatment. Please cite this article as: Wang Y, Sun XY, Ma FQ, Ren MM, Zhao RH, Qin MM, Zhu XH, Xu Y, Cao ND, Chen YY, Dong TG, Pan YF, Zhao AG. Morin inhibits ubiquitination degradation of BCL-2 associated agonist of cell death and synergizes with BCL-2 inhibitor in gastric cancer cells. J Integr Med. 2025; 23(3): 320-332.
Humans
;
Flavonoids/therapeutic use*
;
Stomach Neoplasms/pathology*
;
Animals
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Cell Line, Tumor
;
Apoptosis/drug effects*
;
Cell Proliferation/drug effects*
;
Ubiquitination/drug effects*
;
Mice
;
Drug Synergism
;
Mice, Inbred BALB C
;
Mice, Nude
;
Xenograft Model Antitumor Assays
;
Flavones
5.Longitudinal Associations between Vitamin D Status and Systemic Inflammation Markers among Early Adolescents.
Ting TANG ; Xin Hui WANG ; Xue WEN ; Min LI ; Meng Yuan YUAN ; Yong Han LI ; Xiao Qin ZHONG ; Fang Biao TAO ; Pu Yu SU ; Xi Hua YU ; Geng Fu WANG
Biomedical and Environmental Sciences 2025;38(1):94-99
6.The glutamate-serine-glycine index as a biomarker to monitor the effects of bariatric surgery on non-alcoholic fatty liver disease
Nichole Yue Ting Tan ; Elizabeth Shumbayawonda ; Lionel Tim-Ee Cheng ; Albert Su Chong Low ; Chin Hong Lim ; Alvin Kim Hock Eng ; Weng Hoong Chan ; Phong Ching Lee ; Mei Fang Tay ; Jason Pik Eu Chang ; Yong Mong Bee ; George Boon Bee Goh ; Jianhong Ching ; Kee Voon Chua ; Sharon Hong Yu Han ; Jean-Paul Kovalik ; Hong Chang Tan
Journal of the ASEAN Federation of Endocrine Societies 2024;39(2):54-60
Objective:
Bariatric surgery effectively treats non-alcoholic fatty liver disease (NAFLD). The glutamate-serine-glycine (GSG) index has emerged as a non-invasive diagnostic marker for NAFLD, but its ability to monitor treatment response remains unclear. This study investigates the GSG index's ability to monitor NAFLD's response to bariatric surgery.
Methodology:
Ten NAFLD participants were studied at baseline and 6 months post-bariatric surgery. Blood samples were collected for serum biomarkers and metabolomic profiling. Hepatic steatosis [proton density fat fraction (PDFF)] and fibroinflammation (cT1) were quantified with multiparametric magnetic resonance imaging (mpMRI), and hepatic stiffness with magnetic resonance elastography (MRE). Amino acids and acylcarnitines were measured with mass spectrometry. Statistical analyses included paired Student’s t-test, Wilcoxon-signed rank test, and Pearson’s correlation.
Results:
Eight participants provided complete data. At baseline, all had hepatic steatosis (BMI 39.3 ± 5.6 kg/m2, PDFF ≥ 5%). Post-surgery reductions in PDFF (from 12.4 ± 6.7% to 6.2 ± 2.8%, p = 0.013) and cT1 (from 823.3 ± 85.4ms to 757.5 ± 41.6ms, p = 0.039) were significant, along with the GSG index (from 0.272 ± 0.03 to 0.157 ± 0.05, p = 0.001).
Conclusion
The GSG index can potentially be developed as a marker for monitoring the response of patients with NAFLD to bariatric surgery.
Non-alcoholic Fatty Liver Disease
;
Amino Acids
;
Metabolomics
7.An advanced machine learning method for simultaneous breast cancer risk prediction and risk ranking in Chinese population: A prospective cohort and modeling study
Liyuan LIU ; Yong HE ; Chunyu KAO ; Yeye FAN ; Fu YANG ; Fei WANG ; Lixiang YU ; Fei ZHOU ; Yujuan XIANG ; Shuya HUANG ; Chao ZHENG ; Han CAI ; Heling BAO ; Liwen FANG ; Linhong WANG ; Zengjing CHEN ; Zhigang YU
Chinese Medical Journal 2024;137(17):2084-2091
Background::Breast cancer (BC) risk-stratification tools for Asian women that are highly accurate and can provide improved interpretation ability are lacking. We aimed to develop risk-stratification models to predict long- and short-term BC risk among Chinese women and to simultaneously rank potential non-experimental risk factors.Methods::The Breast Cancer Cohort Study in Chinese Women, a large ongoing prospective dynamic cohort study, includes 122,058 women aged 25-70 years old from the eastern part of China. We developed multiple machine-learning risk prediction models using parametric models (penalized logistic regression, bootstrap, and ensemble learning), which were the short-term ensemble penalized logistic regression (EPLR) risk prediction model and the ensemble penalized long-term (EPLT) risk prediction model to estimate BC risk. The models were assessed based on calibration and discrimination, and following this assessment, they were externally validated in new study participants from 2017 to 2020.Results::The AUC values of the short-term EPLR risk prediction model were 0.800 for the internal validation and 0.751 for the external validation set. For the long-term EPLT risk prediction model, the area under the receiver operating characteristic curve was 0.692 and 0.760 in internal and external validations, respectively. The net reclassification improvement index of the EPLT relative to the Gail and the Han Chinese Breast Cancer Prediction Model (HCBCP) models for external validation was 0.193 and 0.233, respectively, indicating that the EPLT model has higher classification accuracy.Conclusions::We developed the EPLR and EPLT models to screen populations with a high risk of developing BC. These can serve as useful tools to aid in risk-stratified screening and BC prevention.
8.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
9.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
10.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.


Result Analysis
Print
Save
E-mail