1.Predicting the surgical difficulty,complications and prognosis of kidney tumors based on anatomical features:advances in renal tumor scoring systems
Gen LI ; Yuhao YU ; Xuexing FAN ; Jincheng LI ; Jiasong LI ; Pugui LI ; Xiaopen CHEN ; He WANG ; Geng ZHANG ; Yong WANG
Journal of Modern Urology 2025;30(4):355-363
Renal tumor scoring systems can describe the anatomical characteristics of renal tumors. It is an important standard to evaluate the surgical complexity and to evaluate the surgical complexity and feasibility of partial nephrectomy. Scholars at home and abroad have established various scoring systems based on different anatomical parameters,such as R.E.N.A.L.,PADUA,C-Index,which are used to guide the clinical selection of surgical modalities,and predict perioperative complications and prognosis. In this paper,various scoring systems are grouped into three major categories according to their functions:prediction of surgical complexity,prediction of complications,and prediction of prognosis. The contents,characteristics and clinical application value of various renal tumor scoring systems are introduced in detail to guide urologists,enhance their surgical decision-making ability,and improve the clinical outcomes.
2.A 30-year review and outlook on esophageal acid and pressure measurement
Yong JIANG ; Wentao FANG ; Zhigang LI ; Wenhu CHEN ; Wenhu PAN ; Yanfang ZHENG ; Hong ZHANG ; Yuchen SU ; Jie ZHANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(06):766-770
The Department of Thoracic Surgery of Shanghai Chest Hospital has performed esophageal function testing for over 30 years, being the only department of its kind in China with this capability. The pressure testing and 24-hour pH/impedance monitoring of the esophagus is of great help to assist in the diagnosis and treatment of benign and malignant esophageal diseases related to it. Thanks to the esophageal function test, in addition to the routine various endoscopic anti-reflux procedures, our hospital has taken the lead in China in recent years to carry out a series of clinical and research work for benign esophageal diseases, such as the development of magnetic ring, double nedoscopic combination and new anti-reflux endoscopic techniques. In recent years, we have carried out high-resolution esophageal manometry and 24-hour pH/impedance monitoring for patients with interstitial pneumonia and pulmonary fibrosis suspected to be caused by gastroesophageal acid reflux. We can better assess the correlation between gastroesophageal reflux and pulmonary fibrosis, and to provide the different clinical treatments and even surgical interventions. The Bravo capsule is used more often in the United States, and it has obvious advantages over traditional approach for acid measurement. We strongly call for the collaboration between industry and academic institutions in this field, and the development of our own related products with independent intellectual property rights.
3.Research progress on the pathogenesis of chronic obstructive pulmonary disease complicated with lung cancer
Anying LI ; Zhiwei LI ; Dianhan SUN ; Yong CHEN ; Jun WU ; Yusheng SHU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(06):855-862
Chronic obstructive pulmonary disease (COPD), which predominantly affects middle-aged and elderly individuals, is associated with a significantly reduced quality of life and often triggers various other pulmonary conditions. Lung cancer, as one of the most prevalent and deadly pulmonary malignancies worldwide, poses a severe threat to global public health. The risk of developing lung cancer is markedly higher in COPD patients compared to the general population, indicating numerous associations between the two conditions that warrant in-depth investigation. Although a substantial body of research has explored the relationship between COPD and lung cancer, studies focusing on the molecular mechanisms underlying their connection remain limited. This article reviews the latest research progress on the mechanisms of COPD complicated by lung cancer from four perspectives: the role of chronic pulmonary inflammation, programmed cell death, genetic and molecular interactions, and dysbiosis of the pulmonary microbiome. The aim of this article is to provide new insights and references for the prevention and therapeutic strategies of COPD complicated with lung cancer.
4.The Relationship of Transcription Factor BRF1 Expression to Tumor and Cardiomyopathy
Li-Ling ZHENG ; Yong-Luan LIN ; Mei-Ling CHEN ; Zheng-Yan ZHONG ; Shuping ZHONG
Progress in Biochemistry and Biophysics 2025;52(9):2241-2251
TFIIB-related factor 1 (BRF1) is an important transcription factor. It specifically regulates the transcription of RNA polymerase III-dependent genes (RNA Pol III genes). The products of these genes are some small non-coding RNAs, including transfer RNAs (tRNAs) and 5S ribosomal RNAs (5S rRNA). The transcription levels of tRNAs and 5S rRNA vary with changes in intracellular BRF1 amounts. tRNAs and 5S rRNA play a crucial role in determining protein synthesis. Studies have demonstrated that dysregulation of tRNAs and 5S rRNA is closely related to cell growth, proliferation, transformation, and even tumorigenesis. BRF1 is a key factor determining the generation of tRNAs and 5S rRNA. Increasing BRF1 expression enhances cell proliferation and transformation, promoting tumor development. In contrast, repressing BRF1 activity decreases the rates of cell proliferation and transformation, and inhibits tumor growth. High levels of BRF1 are found in the samples of patients suffering from hepatocellular carcinoma, breast cancer, gastric carcinoma, lung cancer, prostate carcinoma, and other cancers. It indicates that high levels of BRF1 are closely related to the occurrence of human cancer and may be a common landmark of tumors. But there is discrepancy in the regulatory mechanisms and signaling pathways of BRF1 overexpression in different cancers. In general, high levels of BRF1 in patients suffering from cancer show short survival period and poor prognosis. However, there is one exception, namely breast cancer. Approximate 80% of cases of breast cancer are estrogen receptor-positive (ER+) and 20% are ER-. The cases with high levels of BRF1 reveal longer survival period and better prognosis after they accepted the hormone treatment by Tamoxifen (Tam), compared to the cases with low level BRF1. It seems like a contradiction. Most of the cases with high levels of BRF1 belong to ER+ status. Tam has been used to treat ER+ cases of breast cancer after diagnosis and surgery. Thus, hormone therapy, such as Tam, is more effective on these patients. This is because, on one hand, that Tam competes with E2 (17β-estradiol) to bind to estrogen receptor α (ERα), but does not dissociate to occupy the receptors, blocking E2 binding to this receptor and inhibiting its biological effects. On other hand, Tam can inhibit the expression of BRF1, leading to a decline of intracellular BRF1 levels. Therefore, the actual levels of BRF1 are lower in the patients with ER+ breast cancer. It appears the prognosis of the high BRF1 expression cases better than that of the low BRF1 expression cases. Myocardial hypertrophy manifests magnification of cardiomyocyte volume rather than number increasing in the postnatal heart. Myocardial hypertrophy is a critical risk factor underlying cardiovascular diseases. No matter how myocardial hypertrophy occur, it will ultimately lead to myocardial dysfunction and heart failure. Hypertrophic growth of cardiomyocytes requires a large amount of protein synthesis to meet its needs of cardiomyocyte growth. Animal models and cell experiments have shown that myocardial hypertrophy stimulates a significant increase in BRF1 expression and transcription of tRNAs and 5S rRNA. Interestingly, elevated levels of BRF1 are found in the myocardium tissues of patients with myocardial hypertrophy. These studies demonstrate that BRF1 indeed plays a critical role in myocardial hypertrophy. In summary, high levels of BRF1 are found in patients suffering from different cancers and myocardial hypertrophy. It implies that BRF1 is a promising biological target of cancer and cardiomyopathy. BRF1 is expected to become a common biomarker for early diagnosis and prognostic observation of different human cancers. It is also an important biomarker for the diagnosis and treatment of cardiomyopathy. BRF1 not only holds an important position in the field of basic medical research but also has great prospects for translational medicine. In the present article, we summarize the progress on studies of BRF1 expressions in cancer and cardiomyopathy, proposes future research directions. It is a new research area. Here, we emphasize the significancy of BRF overexpression in the two huge diseases of human, cancer and cardiomyopathy to raise people's attention to this field.
5.Evaluation of cardiac involvement in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis using echocardiography combined with electrocardiography
Aiqing LU ; Ling CHEN ; Xiuyun SUN ; Xin DONG ; Xiaoyan LI ; Yongcun SUN ; Shaowen LYU ; Long YU ; Yong ZHANG
Chinese Journal of Radiological Health 2025;34(4):534-539
Objective To evaluate cardiac involvement in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) using echocardiography combined with electrocardiography. Methods A retrospective analysis was performed on the detailed medical records of AAV patients treated in Jining First People’s Hospital between January 2020 and December 2024. Eighty patients were enrolled in the AAV group, and the risk of heart disease was compared between the AAV group and a control group with 80 subjects matched for age, sex, and cardiovascular disease risk factors. Results Electrocardiographic abnormalities were observed in 78.75% of patients in the AAV group, while significant electrocardiographic abnormalities only occurred in symptomatic patients in the control group. There were no differences in left atrial enlargement or interventricular septal thickening between the AAV group and the control group. The overall left ventricular systolic function in the AAV group was lower than that in the control group (8.75% vs. 0). The incidence of reduced diastolic function in the AAV group was significantly higher than that in the control group (37.5% vs. 15%). The incidence rates of tricuspid regurgitation, mitral regurgitation, aortic regurgitation, and pericardial effusion in the AAV group were significantly higher than those in the control group. Pericardial thickening, aortic stenosis, pulmonary hypertension, and rare periaortic granulomas were found in the AAV group, but not in the control group. Conclusion Echocardiography and electrocardiography are important examination methods for evaluating cardiac involvement in AAV. These methods have key roles in disease screening, diagnosis and treatment, follow-up, and prognosis judgment.
6.Inhibition of interferon regulatory factor 4 orchestrates T cell dysfunction, extending mouse cardiac allograft survival.
Wenjia YUAN ; Hedong ZHANG ; Longkai PENG ; Chao CHEN ; Chen FENG ; Zhouqi TANG ; Pengcheng CUI ; Yaguang LI ; Tengfang LI ; Xia QIU ; Yan CUI ; Yinqi ZENG ; Jiadi LUO ; Xubiao XIE ; Yong GUO ; Xin JIANG ; Helong DAI
Chinese Medical Journal 2025;138(10):1202-1212
BACKGROUND:
T cell dysfunction, which includes exhaustion, anergy, and senescence, is a distinct T cell differentiation state that occurs after antigen exposure. Although T cell dysfunction has been a cornerstone of cancer immunotherapy, its potential in transplant research, while not yet as extensively explored, is attracting growing interest. Interferon regulatory factor 4 (IRF4) has been shown to play a pivotal role in inducing T cell dysfunction.
METHODS:
A novel ultra-low-dose combination of Trametinib and Rapamycin, targeting IRF4 inhibition, was employed to investigate T cell proliferation, apoptosis, cytokine secretion, expression of T-cell dysfunction-associated molecules, effects of mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways, and allograft survival in both in vitro and BALB/c to C57BL/6 mouse cardiac transplantation models.
RESULTS:
In vitro , blockade of IRF4 in T cells effectively inhibited T cell proliferation, increased apoptosis, and significantly upregulated the expression of programmed cell death protein 1 (PD-1), Helios, CD160, and cytotoxic T lymphocyte-associated antigen (CTLA-4), markers of T cell dysfunction. Furthermore, it suppressed the secretion of pro-inflammatory cytokines interferon (IFN)-γ and interleukin (IL)-17. Combining ultra-low-dose Trametinib (0.1 mg·kg -1 ·day -1 ) and Rapamycin (0.1 mg·kg -1 ·day -1 ) demonstrably extended graft survival, with 4 out of 5 mice exceeding 100 days post-transplantation. Moreover, analysis of grafts at day 7 confirmed sustained IFN regulatory factor 4 (IRF4) inhibition, enhanced PD-1 expression, and suppressed IFN-γ secretion, reinforcing the in vivo efficacy of this IRF4-targeting approach. The combination of Trametinib and Rapamycin synergistically inhibited the MAPK and mTOR signaling network, leading to a more pronounced suppression of IRF4 expression.
CONCLUSIONS
Targeting IRF4, a key regulator of T cell dysfunction, presents a promising avenue for inducing transplant immune tolerance. In this study, we demonstrate that a novel ultra-low-dose combination of Trametinib and Rapamycin synergistically suppresses the MAPK and mTOR signaling network, leading to profound IRF4 inhibition, promoting allograft acceptance, and offering a potential new therapeutic strategy for improved transplant outcomes. However, further research is necessary to elucidate the underlying pharmacological mechanisms and facilitate translation to clinical practice.
Animals
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Interferon Regulatory Factors/metabolism*
;
Heart Transplantation/methods*
;
T-Lymphocytes/immunology*
;
Sirolimus/therapeutic use*
;
Pyridones/therapeutic use*
;
Graft Survival/drug effects*
;
Pyrimidinones/therapeutic use*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Male
;
Signal Transduction/drug effects*
7.Percutaneous coronary intervention vs . medical therapy in patients on dialysis with coronary artery disease in China.
Enmin XIE ; Yaxin WU ; Zixiang YE ; Yong HE ; Hesong ZENG ; Jianfang LUO ; Mulei CHEN ; Wenyue PANG ; Yanmin XU ; Chuanyu GAO ; Xiaogang GUO ; Lin CAI ; Qingwei JI ; Yining YANG ; Di WU ; Yiqiang YUAN ; Jing WAN ; Yuliang MA ; Jun ZHANG ; Zhimin DU ; Qing YANG ; Jinsong CHENG ; Chunhua DING ; Xiang MA ; Chunlin YIN ; Zeyuan FAN ; Qiang TANG ; Yue LI ; Lihua SUN ; Chengzhi LU ; Jufang CHI ; Zhuhua YAO ; Yanxiang GAO ; Changan YU ; Jingyi REN ; Jingang ZHENG
Chinese Medical Journal 2025;138(3):301-310
BACKGROUND:
The available evidence regarding the benefits of percutaneous coronary intervention (PCI) on patients receiving dialysis with coronary artery disease (CAD) is limited and inconsistent. This study aimed to evaluate the association between PCI and clinical outcomes as compared with medical therapy alone in patients undergoing dialysis with CAD in China.
METHODS:
This multicenter, retrospective study was conducted in 30 tertiary medical centers across 12 provinces in China from January 2015 to June 2021 to include patients on dialysis with CAD. The primary outcome was major adverse cardiovascular events (MACE), defined as a composite of cardiovascular death, non-fatal myocardial infarction, and non-fatal stroke. Secondary outcomes included all-cause death, the individual components of MACE, and Bleeding Academic Research Consortium criteria types 2, 3, or 5 bleeding. Multivariable Cox proportional hazard models were used to assess the association between PCI and outcomes. Inverse probability of treatment weighting (IPTW) and propensity score matching (PSM) were performed to account for potential between-group differences.
RESULTS:
Of the 1146 patients on dialysis with significant CAD, 821 (71.6%) underwent PCI. After a median follow-up of 23.0 months, PCI was associated with a 43.0% significantly lower risk for MACE (33.9% [ n = 278] vs . 43.7% [ n = 142]; adjusted hazards ratio 0.57, 95% confidence interval 0.45-0.71), along with a slightly increased risk for bleeding outcomes that did not reach statistical significance (11.1% vs . 8.3%; adjusted hazards ratio 1.31, 95% confidence interval, 0.82-2.11). Furthermore, PCI was associated with a significant reduction in all-cause and cardiovascular mortalities. Subgroup analysis did not modify the association of PCI with patient outcomes. These primary findings were consistent across IPTW, PSM, and competing risk analyses.
CONCLUSION
This study indicated that PCI in patients on dialysis with CAD was significantly associated with lower MACE and mortality when comparing with those with medical therapy alone, albeit with a slightly increased risk for bleeding events that did not reach statistical significance.
Humans
;
Percutaneous Coronary Intervention/methods*
;
Male
;
Female
;
Coronary Artery Disease/drug therapy*
;
Retrospective Studies
;
Renal Dialysis/methods*
;
Middle Aged
;
Aged
;
China
;
Proportional Hazards Models
;
Treatment Outcome
8.Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.
Chaoqun WANG ; Hongjun YU ; Shounan LU ; Shanjia KE ; Yanan XU ; Zhigang FENG ; Baolin QIAN ; Miaoyu BAI ; Bing YIN ; Xinglong LI ; Yongliang HUA ; Zhongyu LI ; Dong CHEN ; Bangliang CHEN ; Yongzhi ZHOU ; Shangha PAN ; Yao FU ; Hongchi JIANG ; Dawei WANG ; Yong MA
Chinese Medical Journal 2025;138(22):2993-3003
BACKGROUND:
Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.
METHODS:
In the present study, we established a 70% hepatic warm I/R injury and partial hepatectomy (30% resection) animal models in vivo and hepatocytes anoxia/reoxygenation (A/R) models in vitro with ATO pretreatment and further assessed liver function by histopathologic changes, enzyme-linked immunosorbent assay, cell counting kit-8, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Small interfering RNA (siRNA) for extracellular signal-regulated kinase (ERK) 1/2 was transfected to evaluate the role of ERK1/2 pathway during HIRI, followed by ATO pretreatment. The dynamic process of autophagic flux and numbers of autophagosomes were detected by green fluorescent protein-monomeric red fluorescent protein-LC3 (GFP-mRFP-LC3) staining and transmission electron microscopy.
RESULTS:
A low dose of ATO (0.75 μmol/L in vitro and 1 mg/kg in vivo ) significantly reduced tissue necrosis, inflammatory infiltration, and hepatocyte apoptosis during the process of hepatic I/R. Meanwhile, ATO obviously promoted the ability of cell proliferation and liver regeneration. Mechanistically, in vitro studies have shown that nontoxic concentrations of ATO can activate both ERK and phosphoinositide 3-kinase-serine/threonine kinase (PI3K-AKT) pathways and further induce autophagy. The hepatoprotective mechanism of ATO, at least in part, relies on the effects of ATO on the activation of autophagy, which is ERK-dependent.
CONCLUSION
Low, non-toxic doses of ATO can activate ERK/PI3K-AKT pathways and induce ERK-dependent autophagy in hepatocytes, protecting liver against I/R injury and accelerating hepatocyte regeneration after partial hepatectomy.
Animals
;
Arsenic Trioxide
;
Autophagy/physiology*
;
Reperfusion Injury/prevention & control*
;
Mice
;
Male
;
Proto-Oncogene Proteins c-akt/physiology*
;
Arsenicals/therapeutic use*
;
Oxides/therapeutic use*
;
Liver/metabolism*
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Mice, Inbred C57BL
9.Identification strategy of cold and hot properties of Chinese herbal medicines based on artificial intelligence and biological experiments.
Lin LIN ; Pengcheng ZHAO ; Zhao CHEN ; Bin LIU ; Yuexi WANG ; Qi GENG ; Li LI ; Yong TAN ; Xiaojuan HE ; Li LI ; Jianyu SHI ; Cheng LU
Chinese Medical Journal 2025;138(6):745-747
10.P4HA1 mediates YAP hydroxylation and accelerates collagen synthesis in temozolomide-resistant glioblastoma.
Xueru LI ; Gangfeng YU ; Xiao ZHONG ; Jiacheng ZHONG ; Xiangyu CHEN ; Qinglong CHEN ; Jinjiang XUE ; Xi YANG ; Xinchun ZHANG ; Yao LING ; Yun XIU ; Yaqi DENG ; Hongda LI ; Wei MO ; Yong ZHU ; Ting ZHANG ; Liangjun QIAO ; Song CHEN ; Fanghui LU
Chinese Medical Journal 2025;138(16):1991-2005
BACKGROUND:
Temozolomide (TMZ) resistance is a significant challenge in treating glioblastoma (GBM). Collagen remodeling has been shown to be a critical factor for therapy resistance in other cancers. This study aimed to investigate the mechanism of TMZ chemoresistance by GBM cells reprogramming collagens.
METHODS:
Key extracellular matrix components, including collagens, were examined in paired primary and recurrent GBM samples as well as in TMZ-treated spontaneous and grafted GBM murine models. Human GBM cell lines (U251, TS667) and mouse primary GBM cells were used for in vitro studies. RNA-sequencing analysis, chromatin immunoprecipitation, immunoprecipitation-mass spectrometry, and co-immunoprecipitation assays were conducted to explore the mechanisms involved in collagen accumulation. A series of in vitro and in vivo experiments were designed to assess the role of the collagen regulators prolyl 4-hydroxylase subunit alpha 1 (P4HA1) and yes-associated protein (YAP) in sensitizing GBM cells to TMZ.
RESULTS:
This study revealed that TMZ exposure significantly elevated collagen type I (COL I) expression in both GBM patients and murine models. Collagen accumulation sustained GBM cell survival under TMZ-induced stress, contributing to enhanced TMZ resistance. Mechanistically, P4HA1 directly binded to and hydroxylated YAP, preventing ubiquitination-mediated YAP degradation. Stabilized YAP robustly drove collagen type I alpha 1 ( COL1A1) transcription, leading to increased collagen deposition. Disruption of the P4HA1-YAP axis effectively reduced COL I deposition, sensitized GBM cells to TMZ, and significantly improved mouse survival.
CONCLUSION
P4HA1 maintained YAP-mediated COL1A1 transcription, leading to collagen accumulation and promoting chemoresistance in GBM.
Temozolomide
;
Humans
;
Glioblastoma/drug therapy*
;
Animals
;
Mice
;
Cell Line, Tumor
;
Drug Resistance, Neoplasm/genetics*
;
YAP-Signaling Proteins
;
Hydroxylation
;
Dacarbazine/pharmacology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Transcription Factors/metabolism*
;
Collagen/biosynthesis*
;
Collagen Type I/metabolism*
;
Prolyl Hydroxylases/metabolism*
;
Antineoplastic Agents, Alkylating/therapeutic use*

Result Analysis
Print
Save
E-mail