1.Toxicological evidence integration to confirm the biological plausibility of the association between humidifier disinfectant exposure and respiratory diseases using the AEP-AOP framework
Ha Ryong KIM ; Jun Woo KIM ; Jong-Hyeon LEE ; Younghee KIM ; Jungyun LIM ; Yong-Wook BAEK ; Sunkyoung SHIN ; Mina HA ; Hae-Kwan CHEONG ; Kyu Hyuck CHUNG ;
Epidemiology and Health 2024;46(1):e2024060-
OBJECTIVES:
Exposure to humidifier disinfectants has been linked to respiratory diseases, including interstitial lung disease, asthma, and pneumonia. Consequently, numerous toxicological studies have explored respiratory damage as both a necessary and sufficient condition for these diseases. We systematically reviewed and integrated evidence from toxicological studies by applying the evidence integration method established in previous research to confirm the biological plausibility of the association between exposure and disease.
METHODS:
We conducted a literature search focusing on polyhexamethylene guanidine phosphate (PHMG) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT), the primary ingredients in humidifier disinfectants. We selected relevant studies based on their quality and the population, exposure, comparator, outcome (PECO) statements. These studies were categorized into three lines of evidence: hazard information, animal studies, and mechanistic studies. Based on a systematic review, we integrated the evidence to develop an aggregate exposure pathway–adverse outcome pathway (AEP-AOP) model for respiratory damage. The reliability and relevance of our findings were assessed by comparing them with the hypothesized pathogenic mechanisms of respiratory diseases.
RESULTS:
By integrating toxicological evidence for each component of the AEP-AOP framework for PHMG and CMIT/MIT, we developed an AEP-AOP model that elucidates how disinfectants released from humidifiers expose target sites, triggering molecular initiating events and key events that ultimately lead to respiratory damage. This model exhibits high reliability and relevance to the pathogenesis of respiratory diseases.
CONCLUSIONS
The AEP-AOP model developed in this study provides strong evidence, based on evidence-based toxicology, that exposure to humidifier disinfectants causes respiratory diseases. This model demonstrates the pathways leading to respiratory damage, a hallmark of these conditions.
2.Toxicological evidence integration to confirm the biological plausibility of the association between humidifier disinfectant exposure and respiratory diseases using the AEP-AOP framework
Ha Ryong KIM ; Jun Woo KIM ; Jong-Hyeon LEE ; Younghee KIM ; Jungyun LIM ; Yong-Wook BAEK ; Sunkyoung SHIN ; Mina HA ; Hae-Kwan CHEONG ; Kyu Hyuck CHUNG ;
Epidemiology and Health 2024;46(1):e2024060-
OBJECTIVES:
Exposure to humidifier disinfectants has been linked to respiratory diseases, including interstitial lung disease, asthma, and pneumonia. Consequently, numerous toxicological studies have explored respiratory damage as both a necessary and sufficient condition for these diseases. We systematically reviewed and integrated evidence from toxicological studies by applying the evidence integration method established in previous research to confirm the biological plausibility of the association between exposure and disease.
METHODS:
We conducted a literature search focusing on polyhexamethylene guanidine phosphate (PHMG) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT), the primary ingredients in humidifier disinfectants. We selected relevant studies based on their quality and the population, exposure, comparator, outcome (PECO) statements. These studies were categorized into three lines of evidence: hazard information, animal studies, and mechanistic studies. Based on a systematic review, we integrated the evidence to develop an aggregate exposure pathway–adverse outcome pathway (AEP-AOP) model for respiratory damage. The reliability and relevance of our findings were assessed by comparing them with the hypothesized pathogenic mechanisms of respiratory diseases.
RESULTS:
By integrating toxicological evidence for each component of the AEP-AOP framework for PHMG and CMIT/MIT, we developed an AEP-AOP model that elucidates how disinfectants released from humidifiers expose target sites, triggering molecular initiating events and key events that ultimately lead to respiratory damage. This model exhibits high reliability and relevance to the pathogenesis of respiratory diseases.
CONCLUSIONS
The AEP-AOP model developed in this study provides strong evidence, based on evidence-based toxicology, that exposure to humidifier disinfectants causes respiratory diseases. This model demonstrates the pathways leading to respiratory damage, a hallmark of these conditions.
3.Toxicological evidence integration to confirm the biological plausibility of the association between humidifier disinfectant exposure and respiratory diseases using the AEP-AOP framework
Ha Ryong KIM ; Jun Woo KIM ; Jong-Hyeon LEE ; Younghee KIM ; Jungyun LIM ; Yong-Wook BAEK ; Sunkyoung SHIN ; Mina HA ; Hae-Kwan CHEONG ; Kyu Hyuck CHUNG ;
Epidemiology and Health 2024;46(1):e2024060-
OBJECTIVES:
Exposure to humidifier disinfectants has been linked to respiratory diseases, including interstitial lung disease, asthma, and pneumonia. Consequently, numerous toxicological studies have explored respiratory damage as both a necessary and sufficient condition for these diseases. We systematically reviewed and integrated evidence from toxicological studies by applying the evidence integration method established in previous research to confirm the biological plausibility of the association between exposure and disease.
METHODS:
We conducted a literature search focusing on polyhexamethylene guanidine phosphate (PHMG) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT), the primary ingredients in humidifier disinfectants. We selected relevant studies based on their quality and the population, exposure, comparator, outcome (PECO) statements. These studies were categorized into three lines of evidence: hazard information, animal studies, and mechanistic studies. Based on a systematic review, we integrated the evidence to develop an aggregate exposure pathway–adverse outcome pathway (AEP-AOP) model for respiratory damage. The reliability and relevance of our findings were assessed by comparing them with the hypothesized pathogenic mechanisms of respiratory diseases.
RESULTS:
By integrating toxicological evidence for each component of the AEP-AOP framework for PHMG and CMIT/MIT, we developed an AEP-AOP model that elucidates how disinfectants released from humidifiers expose target sites, triggering molecular initiating events and key events that ultimately lead to respiratory damage. This model exhibits high reliability and relevance to the pathogenesis of respiratory diseases.
CONCLUSIONS
The AEP-AOP model developed in this study provides strong evidence, based on evidence-based toxicology, that exposure to humidifier disinfectants causes respiratory diseases. This model demonstrates the pathways leading to respiratory damage, a hallmark of these conditions.
4.Toxicological evidence integration to confirm the biological plausibility of the association between humidifier disinfectant exposure and respiratory diseases using the AEP-AOP framework
Ha Ryong KIM ; Jun Woo KIM ; Jong-Hyeon LEE ; Younghee KIM ; Jungyun LIM ; Yong-Wook BAEK ; Sunkyoung SHIN ; Mina HA ; Hae-Kwan CHEONG ; Kyu Hyuck CHUNG ;
Epidemiology and Health 2024;46(1):e2024060-
OBJECTIVES:
Exposure to humidifier disinfectants has been linked to respiratory diseases, including interstitial lung disease, asthma, and pneumonia. Consequently, numerous toxicological studies have explored respiratory damage as both a necessary and sufficient condition for these diseases. We systematically reviewed and integrated evidence from toxicological studies by applying the evidence integration method established in previous research to confirm the biological plausibility of the association between exposure and disease.
METHODS:
We conducted a literature search focusing on polyhexamethylene guanidine phosphate (PHMG) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT), the primary ingredients in humidifier disinfectants. We selected relevant studies based on their quality and the population, exposure, comparator, outcome (PECO) statements. These studies were categorized into three lines of evidence: hazard information, animal studies, and mechanistic studies. Based on a systematic review, we integrated the evidence to develop an aggregate exposure pathway–adverse outcome pathway (AEP-AOP) model for respiratory damage. The reliability and relevance of our findings were assessed by comparing them with the hypothesized pathogenic mechanisms of respiratory diseases.
RESULTS:
By integrating toxicological evidence for each component of the AEP-AOP framework for PHMG and CMIT/MIT, we developed an AEP-AOP model that elucidates how disinfectants released from humidifiers expose target sites, triggering molecular initiating events and key events that ultimately lead to respiratory damage. This model exhibits high reliability and relevance to the pathogenesis of respiratory diseases.
CONCLUSIONS
The AEP-AOP model developed in this study provides strong evidence, based on evidence-based toxicology, that exposure to humidifier disinfectants causes respiratory diseases. This model demonstrates the pathways leading to respiratory damage, a hallmark of these conditions.
5.Evidence integration on health damage for humidifier disinfectant exposure and legal presumption of causation
Mina HA ; Taehyun PARK ; Jong-Hyun LEE ; Younghee KIM ; Jungyun LIM ; Yong-Wook BAEK ; Sol YU ; Hyen-Mi CHUNG ; Kyu Hyuck CHUNG ; Hae-Kwan CHEONG ;
Epidemiology and Health 2023;45(1):e2023095-
OBJECTIVES:
Inhalation exposure to humidifier disinfectants has resulted to various types of health damages in Korea. To determine the epidemiological correlation necessary for presuming the legal causation, we aimed to develop a method to synthesize the entire evidence.
METHODS:
Epidemiological and toxicological studies are systematically reviewed. Target health problems are selected by criteria such as frequent complaints of claimants. Relevant epidemiologic studies are reviewed and the risk of bias and confidence level of the total evidence are evaluated. Toxicological literature reviews are conducted on three lines of evidence including hazard information, animal studies, and mechanistic studies, considering the source-to-exposure-to-outcome continuum. The confidence level of the body of evidence is then translated into the toxicological evidence levels for the causality between humidifier disinfectant exposure and health effects. Finally, the levels of epidemiological and toxicological evidence are synthesized.
RESULTS:
Under the Special Act revised in 2020, if the history of exposure and the disease occurred/worsened after exposure were approved, and the epidemiological correlation between the exposure and disease was verified, the legal causation is presumed unless the company proves the evidence against it. The epidemiological correlation can be verified through epidemiological investigations, health monitoring, cohort investigations and/or toxicological studies. It is not simply as statistical association as understood in judicial precedents, but a general causation established by the evidence as a whole, i.e., through weight-of-the-evidence approach.
CONCLUSIONS
The weight-of-the-evidence approach differs from the conclusive single study approach and this systematic evidence integration can be used in presumption of causation.
6.Prognostic Value of Alpha-Fetoprotein in Patients Who Achieve a Complete Response to Transarterial Chemoembolization for Hepatocellular Carcinoma
Jae Seung LEE ; Young Eun CHON ; Beom Kyung KIM ; Jun Yong PARK ; Do Young KIM ; Sang Hoon AHN ; Kwang-Hyub HAN ; Wonseok KANG ; Moon Seok CHOI ; Geum-Youn GWAK ; Yong-Han PAIK ; Joon Hyeok LEE ; Kwang Cheol KOH ; Seung Woon PAIK ; Hwi Young KIM ; Tae Hun KIM ; Kwon YOO ; Yeonjung HA ; Mi Na KIM ; Joo Ho LEE ; Seong Gyu HWANG ; Soon Sun KIM ; Hyo Jung CHO ; Jae Youn CHEONG ; Sung Won CHO ; Seung Ha PARK ; Nae-Yun HEO ; Young Mi HONG ; Ki Tae YOON ; Mong CHO ; Jung Gil PARK ; Min Kyu KANG ; Soo Young PARK ; Young Oh KWEON ; Won Young TAK ; Se Young JANG ; Dong Hyun SINN ; Seung Up KIM ;
Yonsei Medical Journal 2021;62(1):12-20
Purpose:
Alpha-fetoprotein (AFP) is a prognostic marker for hepatocellular carcinoma (HCC). We investigated the prognostic value of AFP levels in patients who achieved complete response (CR) to transarterial chemoembolization (TACE) for HCC.
Materials and Methods:
Between 2005 and 2018, 890 patients with HCC who achieved a CR to TACE were recruited. An AFP responder was defined as a patient who showed elevated levels of AFP (>10 ng/mL) during TACE, but showed normalization or a >50% reduction in AFP levels after achieving a CR.
Results:
Among the recruited patients, 569 (63.9%) with naïve HCC and 321 (36.1%) with recurrent HCC after complete resection were treated. Before TACE, 305 (34.3%) patients had multiple tumors, 219 (24.6%) had a maximal tumor size >3 cm, and 22 (2.5%) had portal vein tumor thrombosis. The median AFP level after achieving a CR was 6.36 ng/mL. After a CR, 473 (53.1%) patients experienced recurrence, and 417 (46.9%) died [median progression-free survival (PFS) and overall survival (OS) of 16.3 and 62.8 months, respectively]. High AFP levels at CR (>20 ng/mL) were independently associated with a shorter PFS [hazard ratio (HR)=1.403] and OS (HR=1.284), together with tumor multiplicity at TACE (HR=1.518 and 1.666, respectively). AFP non-responders at CR (76.2%, n=359 of 471) showed a shorter PFS (median 10.5 months vs. 15.5 months, HR=1.375) and OS (median 41.4 months vs. 61.8 months, HR=1.424) than AFP responders (all p=0.001).
Conclusion
High AFP levels and AFP non-responders were independently associated with poor outcomes after TACE. AFP holds clinical implications for detailed risk stratification upon achieving a CR after TACE.
7.SARS-CoV-2 Omicron Mutation Is Faster than the Chase: Multiple Mutations on Spike/ACE2 Interaction Residues
Sinae KIM ; Tam T. NGUYEN ; Afeisha S. TAITT ; Hyunjhung JHUN ; Ho-Young PARK ; Sung-Han KIM ; Yong-Gil KIM ; Eun Young SONG ; Youngmin LEE ; Hokee YUM ; Kyeong-Cheol SHIN ; Yang Kyu CHOI ; Chang-Seon SONG ; Su Cheong YEOM ; Byoungguk KIM ; Mihai NETEA ; Soohyun KIM
Immune Network 2021;21(6):e38-
Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (B.1.1.529) Omicron variant originated from South Africa in the middle of November 2021. SARS-CoV-2 is also called coronavirus disease 2019 (COVID-19) since SARS-CoV-2 is the causative agent of COVID-19. Several studies already suggested that the SARS-CoV-2 Omicron variant would be the fastest transmissible variant compared to the previous 10 SARS-CoV-2 variants of concern, interest, and alert. Few clinical studies reported the high transmissibility of the Omicron variant but there is insufficient time to perform actual experiments to prove it, since the spread is so fast. We analyzed the SARS-CoV-2 Omicron variant, which revealed a very high rate of mutation at amino acid residues that interact with angiostatin-converting enzyme 2. The mutation rate of COVID-19 is faster than what we prepared vaccine program, antibody therapy, lockdown, and quarantine against COVID-19 so far. Thus, it is necessary to find better strategies to overcome the current crisis of COVID-19 pandemic.
9.Single Patient Classifier Assay, Microsatellite Instability, and Epstein-Barr Virus Status Predict Clinical Outcomes in Stage II/III Gastric Cancer: Results from CLASSIC Trial
Chul Kyu ROH ; Yoon Young CHOI ; Seohee CHOI ; Won Jun SEO ; Minah CHO ; Eunji JANG ; Taeil SON ; Hyoung Il KIM ; Hyeseon KIM ; Woo Jin HYUNG ; Yong Min HUH ; Sung Hoon NOH ; Jae Ho CHEONG
Yonsei Medical Journal 2019;60(2):132-139
PURPOSE: Clinical implications of single patient classifier (SPC) and microsatellite instability (MSI) in stage II/III gastric cancer have been reported. We investigated SPC and the status of MSI and Epstein-Barr virus (EBV) as combinatory biomarkers to predict the prognosis and responsiveness of adjuvant chemotherapy for stage II/III gastric cancer. MATERIALS AND METHODS: Tumor specimens and clinical information were collected from patients enrolled in CLASSIC trial, a randomized controlled study of capecitabine plus oxaliplatin-based adjuvant chemotherapy. The results of nine-gene based SPC assay were classified as prognostication (SPC-prognosis) and prediction of chemotherapy benefit (SPC-prediction). Five quasimonomorphic mononucleotide markers were used to assess tumor MSI status. EBV-encoded small RNA in situ hybridization was performed to define EBV status. RESULTS: There were positive associations among SPC, MSI, and EBV statuses among 586 patients. In multivariate analysis of disease-free survival, SPC-prognosis [hazard ratio (HR): 1.879 (1.101–3.205), 2.399 (1.415–4.067), p=0.003] and MSI status (HR: 0.363, 95% confidence interval: 0.161–0.820, p=0.015) were independent prognostic factors along with age, Lauren classification, TNM stage, and chemotherapy. Patient survival of SPC-prognosis was well stratified regardless of EBV status and in microsatellite stable (MSS) group, but not in MSI-high group. Significant survival benefit from adjuvant chemotherapy was observed by SPC-Prediction in MSS and EBV-negative gastric cancer. CONCLUSION: SPC, MSI, and EBV statuses could be used in combination to predict the prognosis and responsiveness of adjuvant chemotherapy for stage II/III gastric cancer.
Biomarkers
;
Capecitabine
;
Chemotherapy, Adjuvant
;
Classification
;
Disease-Free Survival
;
Drug Therapy
;
Herpesvirus 4, Human
;
Humans
;
In Situ Hybridization
;
Microsatellite Instability
;
Microsatellite Repeats
;
Multivariate Analysis
;
Prognosis
;
RNA
;
Stomach Neoplasms
10.LGR5 and Downstream Intracellular Signaling Proteins Play Critical Roles in the Cell Proliferation of Neuroblastoma, Meningioma and Pituitary Adenoma
Mina HWANG ; Myung Hoon HAN ; Hyun Hee PARK ; Hojin CHOI ; Kyu Yong LEE ; Young Joo LEE ; Jae Min KIM ; Jin Hwan CHEONG ; Je Il RYU ; Kyueng Whan MIN ; Young Ha OH ; Yong KO ; Seong Ho KOH
Experimental Neurobiology 2019;28(5):628-641
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been reported to play critical roles in the proliferation of various cancer cells. However, the roles of LGR5 in brain tumors and the specific intracellular signaling proteins directly associated with it remain unknown. Expression of LGR5 was first measured in normal brain tissue, meningioma, and pituitary adenoma of humans. To identify the downstream signaling pathways of LGR5, siRNA-mediated knockdown of LGR5 was performed in SH-SY5Y neuroblastoma cells followed by proteomics analysis with 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In addition, the expression of LGR5-associated proteins was evaluated in LGR5-inhibited neuroblastoma cells and in human normal brain, meningioma, and pituitary adenoma tissue. Proteomics analysis showed 12 protein spots were significantly different in expression level (more than two-fold change) and subsequently identified by peptide mass fingerprinting. A protein association network was constructed from the 12 identified proteins altered by LGR5 knockdown. Direct and indirect interactions were identified among the 12 proteins. HSP 90-beta was one of the proteins whose expression was altered by LGR5 knockdown. Likewise, we observed decreased expression of proteins in the hnRNP subfamily following LGR5 knockdown. In addition, we have for the first time identified significantly higher hnRNP family expression in meningioma and pituitary adenoma compared to normal brain tissue. Taken together, LGR5 and its downstream signaling play critical roles in neuroblastoma and brain tumors such as meningioma and pituitary adenoma.
Brain
;
Brain Neoplasms
;
Cell Proliferation
;
Dermatoglyphics
;
Electrophoresis, Polyacrylamide Gel
;
GTP-Binding Proteins
;
Heterogeneous-Nuclear Ribonucleoproteins
;
Humans
;
Intracellular Signaling Peptides and Proteins
;
Meningioma
;
Neuroblastoma
;
Pituitary Neoplasms
;
Proteomics

Result Analysis
Print
Save
E-mail