1.The Impact of Hospital Volume and Region on Mortality, Medical Costs, and Length of Hospital Stay in Elderly Patients Following Hip Fracture:A Nationwide Claims Database Analysis
Seung Hoon KIM ; Suk-Yong JANG ; Yonghan CHA ; Hajun JANG ; Bo-Yeon KIM ; Hyo-Jung LEE ; Gui-Ok KIM
Clinics in Orthopedic Surgery 2025;17(1):80-90
Background:
The purpose of our study was to analyze the effects of hospital volume and region on in-hospital and long-term mortality, direct medical costs (DMCs), and length of hospital stay (LOS) in elderly patients following hip fracture, utilizing nationwide claims data.
Methods:
This retrospective nationwide study sourced its subjects from the Korean National Health Insurance Review and Assessment Service database spanning from January 2011 to December 2018. A generalized estimating equation model with a Poisson distribution and logarithmic link function was used to estimate adjusted odds ratios (aORs) and 95% CIs to assess the association of hospital volume with in-hospital and 1-year mortality, DMCs, and LOS .
Results:
A total of 172,144 patients were included. Comparing the risk of in-hospital death between high-volume and low-volume hospitals, the risk of in-hospital death was 1.2 times higher at low-volume hospitals (aOR, 1.20; 95% CI, 1.07–1.33; p = 0.002).Additionally, the risk of death at 1 year was 1.05 times higher at low-volume hospitals (aOR, 1.05; 95% CI, 1.01–1.09; p = 0.008) compared to high-volume hospitals. DMCs were 0.84 times lower at low-volume hospitals for in-hospital period (aOR, 0.84; 95% CI, 0.84–0.85; p < 0.001) and 0.87 times lower for 1 year (aOR, 0.87; 95% CI, 0.86–0.88; p < 0.001) compared to high-volume hospitals. In-hospital LOS was 1.21 times longer at low-volume hospitals (aOR, 1.21; 95% CI, 1.20–1.22; p < 0.001) than at high-volume hospitals. In addition, the risk of in-hospital death was 1.22 times higher (aOR, 1.22; 95% CI, 1.12–1.33; p < 0.001) and the risk of 1-year death was 1.07 times higher (aOR, 1.07; 95% CI, 1.04–1.10; p < 0.001) at rural hospitals compared to urban hospitals.
Conclusions
Clinicians should focus on improving clinical outcomes for hip fracture patients in low-volume and rural hospital settings, with a specific emphasis on reducing mortality rates.
2.The Impact of Hospital Volume and Region on Mortality, Medical Costs, and Length of Hospital Stay in Elderly Patients Following Hip Fracture:A Nationwide Claims Database Analysis
Seung Hoon KIM ; Suk-Yong JANG ; Yonghan CHA ; Hajun JANG ; Bo-Yeon KIM ; Hyo-Jung LEE ; Gui-Ok KIM
Clinics in Orthopedic Surgery 2025;17(1):80-90
Background:
The purpose of our study was to analyze the effects of hospital volume and region on in-hospital and long-term mortality, direct medical costs (DMCs), and length of hospital stay (LOS) in elderly patients following hip fracture, utilizing nationwide claims data.
Methods:
This retrospective nationwide study sourced its subjects from the Korean National Health Insurance Review and Assessment Service database spanning from January 2011 to December 2018. A generalized estimating equation model with a Poisson distribution and logarithmic link function was used to estimate adjusted odds ratios (aORs) and 95% CIs to assess the association of hospital volume with in-hospital and 1-year mortality, DMCs, and LOS .
Results:
A total of 172,144 patients were included. Comparing the risk of in-hospital death between high-volume and low-volume hospitals, the risk of in-hospital death was 1.2 times higher at low-volume hospitals (aOR, 1.20; 95% CI, 1.07–1.33; p = 0.002).Additionally, the risk of death at 1 year was 1.05 times higher at low-volume hospitals (aOR, 1.05; 95% CI, 1.01–1.09; p = 0.008) compared to high-volume hospitals. DMCs were 0.84 times lower at low-volume hospitals for in-hospital period (aOR, 0.84; 95% CI, 0.84–0.85; p < 0.001) and 0.87 times lower for 1 year (aOR, 0.87; 95% CI, 0.86–0.88; p < 0.001) compared to high-volume hospitals. In-hospital LOS was 1.21 times longer at low-volume hospitals (aOR, 1.21; 95% CI, 1.20–1.22; p < 0.001) than at high-volume hospitals. In addition, the risk of in-hospital death was 1.22 times higher (aOR, 1.22; 95% CI, 1.12–1.33; p < 0.001) and the risk of 1-year death was 1.07 times higher (aOR, 1.07; 95% CI, 1.04–1.10; p < 0.001) at rural hospitals compared to urban hospitals.
Conclusions
Clinicians should focus on improving clinical outcomes for hip fracture patients in low-volume and rural hospital settings, with a specific emphasis on reducing mortality rates.
3.The Impact of Hospital Volume and Region on Mortality, Medical Costs, and Length of Hospital Stay in Elderly Patients Following Hip Fracture:A Nationwide Claims Database Analysis
Seung Hoon KIM ; Suk-Yong JANG ; Yonghan CHA ; Hajun JANG ; Bo-Yeon KIM ; Hyo-Jung LEE ; Gui-Ok KIM
Clinics in Orthopedic Surgery 2025;17(1):80-90
Background:
The purpose of our study was to analyze the effects of hospital volume and region on in-hospital and long-term mortality, direct medical costs (DMCs), and length of hospital stay (LOS) in elderly patients following hip fracture, utilizing nationwide claims data.
Methods:
This retrospective nationwide study sourced its subjects from the Korean National Health Insurance Review and Assessment Service database spanning from January 2011 to December 2018. A generalized estimating equation model with a Poisson distribution and logarithmic link function was used to estimate adjusted odds ratios (aORs) and 95% CIs to assess the association of hospital volume with in-hospital and 1-year mortality, DMCs, and LOS .
Results:
A total of 172,144 patients were included. Comparing the risk of in-hospital death between high-volume and low-volume hospitals, the risk of in-hospital death was 1.2 times higher at low-volume hospitals (aOR, 1.20; 95% CI, 1.07–1.33; p = 0.002).Additionally, the risk of death at 1 year was 1.05 times higher at low-volume hospitals (aOR, 1.05; 95% CI, 1.01–1.09; p = 0.008) compared to high-volume hospitals. DMCs were 0.84 times lower at low-volume hospitals for in-hospital period (aOR, 0.84; 95% CI, 0.84–0.85; p < 0.001) and 0.87 times lower for 1 year (aOR, 0.87; 95% CI, 0.86–0.88; p < 0.001) compared to high-volume hospitals. In-hospital LOS was 1.21 times longer at low-volume hospitals (aOR, 1.21; 95% CI, 1.20–1.22; p < 0.001) than at high-volume hospitals. In addition, the risk of in-hospital death was 1.22 times higher (aOR, 1.22; 95% CI, 1.12–1.33; p < 0.001) and the risk of 1-year death was 1.07 times higher (aOR, 1.07; 95% CI, 1.04–1.10; p < 0.001) at rural hospitals compared to urban hospitals.
Conclusions
Clinicians should focus on improving clinical outcomes for hip fracture patients in low-volume and rural hospital settings, with a specific emphasis on reducing mortality rates.
4.The Impact of Hospital Volume and Region on Mortality, Medical Costs, and Length of Hospital Stay in Elderly Patients Following Hip Fracture:A Nationwide Claims Database Analysis
Seung Hoon KIM ; Suk-Yong JANG ; Yonghan CHA ; Hajun JANG ; Bo-Yeon KIM ; Hyo-Jung LEE ; Gui-Ok KIM
Clinics in Orthopedic Surgery 2025;17(1):80-90
Background:
The purpose of our study was to analyze the effects of hospital volume and region on in-hospital and long-term mortality, direct medical costs (DMCs), and length of hospital stay (LOS) in elderly patients following hip fracture, utilizing nationwide claims data.
Methods:
This retrospective nationwide study sourced its subjects from the Korean National Health Insurance Review and Assessment Service database spanning from January 2011 to December 2018. A generalized estimating equation model with a Poisson distribution and logarithmic link function was used to estimate adjusted odds ratios (aORs) and 95% CIs to assess the association of hospital volume with in-hospital and 1-year mortality, DMCs, and LOS .
Results:
A total of 172,144 patients were included. Comparing the risk of in-hospital death between high-volume and low-volume hospitals, the risk of in-hospital death was 1.2 times higher at low-volume hospitals (aOR, 1.20; 95% CI, 1.07–1.33; p = 0.002).Additionally, the risk of death at 1 year was 1.05 times higher at low-volume hospitals (aOR, 1.05; 95% CI, 1.01–1.09; p = 0.008) compared to high-volume hospitals. DMCs were 0.84 times lower at low-volume hospitals for in-hospital period (aOR, 0.84; 95% CI, 0.84–0.85; p < 0.001) and 0.87 times lower for 1 year (aOR, 0.87; 95% CI, 0.86–0.88; p < 0.001) compared to high-volume hospitals. In-hospital LOS was 1.21 times longer at low-volume hospitals (aOR, 1.21; 95% CI, 1.20–1.22; p < 0.001) than at high-volume hospitals. In addition, the risk of in-hospital death was 1.22 times higher (aOR, 1.22; 95% CI, 1.12–1.33; p < 0.001) and the risk of 1-year death was 1.07 times higher (aOR, 1.07; 95% CI, 1.04–1.10; p < 0.001) at rural hospitals compared to urban hospitals.
Conclusions
Clinicians should focus on improving clinical outcomes for hip fracture patients in low-volume and rural hospital settings, with a specific emphasis on reducing mortality rates.
5.Interplay Between Interferon Stimulatory Pathways and Organellar Dynamics
Jin-Ru LI ; Yu DUAN ; Xin-Gui DAI ; Yong-Ming YAO
Progress in Biochemistry and Biophysics 2025;52(7):1708-1727
Interferon stimulating factor STING, a transmembrane protein residing in the endoplasmic reticulum, is extensively involved in the sensing and transduction of intracellular signals and serves as a crucial component of the innate immune system. STING is capable of directly or indirectly responding to abnormal DNA originating from diverse sources within the cytoplasm, thereby fulfilling its classical antiviral and antitumor functions. Structurally, STING is composed of 4 transmembrane helices, a cytoplasmic ligand binding domain (LBD), and a C terminal tail structure (CTT). The transmembrane domain (TM), which is formed by the transmembrane helical structures, anchors STING to the endoplasmic reticulum, while the LBD is in charge of binding to cyclic dinucleotides (CDNs). The classical second messenger, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), represents a key upstream molecule for STING activation. Once cGAMP binds to LBD, STING experiences conformational alterations, which subsequently lead to the recruitment of Tank-binding kinase 1 (TBK1) via the CTT domain. This, in turn, mediates interferon secretion and promotes the activation and migration of dendritic cells, T cells, and natural killer cells. Additionally, STING is able to activate nuclear factor-κB (NF-κB), thereby initiating the synthesis and release of inflammatory factors and augmenting the body’s immune response. In recent years, an increasing number of studies have disclosed the non-classical functions of STING. It has been found that STING plays a significant role in organelle regulation. STING is not only implicated in the quality control systems of organelles such as mitochondria and endoplasmic reticulum but also modulates the functions of these organelles. For instance, STING can influence key aspects of organelle quality control, including mitochondrial fission and fusion, mitophagy, and endoplasmic reticulum stress. This regulatory effect is not unidirectional; rather, it is subject to organelle feedback regulation, thereby forming a complex interaction network. STING also exerts a monitoring function on the nucleus and ribosomes, which further enhances the role of the cGAS-STING pathway in infection-related immunity. The interaction mechanism between STING and organelles is highly intricate, which, within a certain range, enhances the cells’ capacity to respond to external stimuli and survival pressure. However, once the balance of this interaction is disrupted, it may result in the occurrence and development of inflammatory diseases, such as aseptic inflammation and autoimmune diseases. Excessive activation or malfunction of STING may trigger an over-exuberant inflammatory response, which subsequently leads to tissue damage and pathological states. This review recapitulates the recent interactions between STING and diverse organelles, encompassing its multifarious functions in antiviral, antitumor, organelle regulation, and immune regulation. These investigations not only deepen the comprehension of molecular mechanisms underlying STING but also offer novel concepts for the exploration of human disease pathogenesis and the development of potential treatment strategies. In the future, with further probing into STING function and its regulatory mechanisms, it is anticipated to pioneer new approaches for the treatment of complex diseases such as inflammatory diseases and tumors.
6.rTMS Improves Cognitive Function and Brain Network Connectivity in Patients With Alzheimer’s Disease
Gui-Zhi XU ; Lin LIU ; Miao-Miao GUO ; Tian WANG ; Jiao-Jiao GAO ; Yong JI ; Pan WANG
Progress in Biochemistry and Biophysics 2025;52(8):2131-2145
ObjectiveRepetitive transcranial magnetic stimulation (rTMS) has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease (AD), but the neurobiological mechanisms linking synaptic pathology, neural oscillatory dynamics, and brain network reorganization remain unclear. This investigation seeks to systematically evaluate the therapeutic potential of rTMS as a non-invasive neuromodulatory intervention through a multimodal framework integrating clinical assessments, molecular profiling, and neurophysiological monitoring. MethodsIn this prospective double-blind trial, 12 AD patients underwent a 14-day protocol of 20 Hz rTMS, with comprehensive multimodal assessments performed pre- and post-intervention. Cognitive functioning was quantified using the mini-mental state examination (MMSE) and Montreal cognitive assessment (MOCA), while daily living capacities and neuropsychiatric profiles were respectively evaluated through the activities of daily living (ADL) scale and combined neuropsychiatric inventory (NPI)-Hamilton depression rating scale (HAMD). Peripheral blood biomarkers, specifically Aβ1-40 and phosphorylated tau (p-tau181), were analyzed to investigate the effects of rTMS on molecular metabolism. Spectral power analysis was employed to investigate rTMS-induced modulations of neural rhythms in AD patients, while brain network analyses incorporating topological properties were conducted to examine stimulus-driven network reorganization. Furthermore, systematic assessment of correlations between cognitive scale scores, blood biomarkers, and network characteristics was performed to elucidate cross-modal therapeutic associations. ResultsClinically, MMSE and MOCA scores improved significantly (P<0.05). Biomarker showed that Aβ1-40 level increased (P<0.05), contrasting with p-tau181 reduction. Moreover, the levels of Aβ1-40 were positively correlated with MMSE and MOCA scores. Post-intervention analyses revealed significant modulations in oscillatory power, characterized by pronounced reductions in delta (P<0.05) and theta bands (P<0.05), while concurrent enhancements were observed in alpha, beta, and gamma band activities (all P<0.05). Network analysis revealed frequency-specific reorganization: clustering coefficients were significantly decreased in delta, theta, and alpha bands (P<0.05), while global efficiency improvement was exclusively detected in the delta band (P<0.05). The alpha band demonstrated concurrent increases in average nodal degree (P<0.05) and characteristic path length reduction (P<0.05). Further research findings indicate that the changes in the clinical scale HAMD scores before and after rTMS stimulation are negatively correlated with the changes in the blood biomarkers Aβ1-40 and p-tau181. Additionally, the changes in the clinical scales MMSE and MoCA scores were negatively correlated with the changes in the node degree of the alpha frequency band and negatively correlated with the clustering coefficient of the delta frequency band. However, the changes in MMSE scores are positively correlated with the changes in global efficiency of both the delta and alpha frequency bands. Conclusion20 Hz rTMS targeting dorsolateral prefrontal cortex (DLPFC) significantly improves cognitive function and enhances the metabolic clearance of β-amyloid and tau proteins in AD patients. This neurotherapeutic effect is mechanistically associated with rTMS-mediated frequency-selective neuromodulation, which enhances the connectivity of oscillatory networks through improved neuronal synchronization and optimized topological organization of functional brain networks. These findings not only support the efficacy of rTMS as an adjunctive therapy for AD but also underscore the importance of employing multiple assessment methods—including clinical scales, blood biomarkers, and EEG——in understanding and monitoring the progression of AD. This research provides a significant theoretical foundation and empirical evidence for further exploration of rTMS applications in AD treatment.
7.Clinical efficacy of autologous apheresis platelet-rich plasma combined with adjustable titanium plate fixation in the treatment of Rockwood type Ⅲ acromioclavicular joint dislocation.
Wei CAI ; An-Ping WU ; Hai-Tao TAN ; Gao-Bing XU ; Zhuo-Yi FU ; Yong PENG ; Di-Shi GUI ; Qiao-Mei PU
China Journal of Orthopaedics and Traumatology 2025;38(6):587-593
OBJECTIVE:
To explore clinical efficacy of autologous platelet-rich plasma(PRP) in treating Rockwood type Ⅲ acromioclavicular dislocation.
METHODS:
From January 2019 to July 2021, 32 patients with Rockwood type Ⅲ acromioclavicular dislocation were treated with minimally invasive adjustable titanium plate internal fixation, and were divided into PRP group and control group according to whether PRP treatment was performed, with 16 patients in each group. In PRP group, there were 10 males and 6 females, aged from 28 to 47 years old with an average of (36.75±7.14) years old;the time from injury to surgery ranged from 1 to 31 h with an average of (26.13±3.98) h;5 patients on the left side and 11 patients on the right side;PRP was injected once during operation and the 4th and 8th weeks after operation respectively. In control group, there were 8 males and 8 females, aged from 30 to 52 years old with an average of (38.50±5.48) years old; the time from injury to surgery ranged from 1 to 29 h with an average of (25.48±3.11) h;7 patients on the left side and 9 patients on the right side; minimally invasive surgical treatment was performed. Visual analogue scale(VAS) was used to evaluate pain and Constant-Murley score for shoulder joint function was used to evaluate the recovery of shoulder joint movement function before operation and 1, 3, 6, and 12 months after operation respectively.
RESULTS:
All patients were followed up for 12 to 28 months with an average of (18.3±5.2) months. All incisions patients healed well without adverse events such as infection. Postoperative VAS of PRP group at 1, 3, and 6 months were (5.5±1.2), (3.7±1.6), and (2.4±1.2), respectively, while were lower than those of control group (6.6±1.4), (4.9±1.1), and (3.7±1.3), respectively;and had statistical differences between two groups (P<0.05). There was no statistically significant difference in VAS between two groups before operation and 12 months after operation (P>0.05). Postoperative Constant-Murley scores of PRP group at 1, 3, and 6 months were (64.09±11.61), (73.19±12.89), and (82.61±14.81) points, respectively, which were higher than those of control group were (52.32±17.42), (61.65±14.43), and (72.52±11.04) respectively;and the differences were statistically significant (P<0.05). There was no statistically significant difference in Constant-Murley scores at 12 months after operation between two groups (P>0.05). In PRP group, there was no statistically significant difference at 6 months and 12 months after operation (P>0.05), while there were statistically significant differences at the other time points (1 month after operation compared with before operation, 3 months after operation compared with 6 months after operation, and 3 months after operation compared with 1 month after operation) (P<0.05). In control group, there was no statistically significant difference when comparing 1 month and 3 months after operation (P>0.05), while at the other time points (1 month after operation with before operation, 3 months after operation with 6 months after operation, and 6 months after operation with 12 months after operation), the differences were all statistically significant (P<0.05).
CONCLUSION
Adjustable titanium plate fixation combined with postoperative injection of PRP for the treatment of Rockwood type III acromioclavicular joint dislocation has effect of promoting the recovery of shoulder joint function and reducing pain.
Humans
;
Male
;
Female
;
Adult
;
Middle Aged
;
Platelet-Rich Plasma
;
Acromioclavicular Joint/surgery*
;
Bone Plates
;
Titanium
;
Joint Dislocations/therapy*
;
Fracture Fixation, Internal/methods*
8.Explanation and interpretation of blood transfusion provisions for children with hematological diseases in the national health standard "Guideline for pediatric transfusion".
Ming-Yi ZHAO ; Rong HUANG ; Rong GUI ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(1):18-25
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion is one of the most commonly used supportive treatments for children with hematological diseases. This guideline provides guidance and recommendations for blood transfusions in children with aplastic anemia, thalassemia, autoimmune hemolytic anemia, glucose-6-phosphate dehydrogenase deficiency, acute leukemia, myelodysplastic syndromes, immune thrombocytopenic purpura, and thrombotic thrombocytopenic purpura. This article presents the evidence and interpretation of the blood transfusion provisions for children with hematological diseases in the "Guideline for pediatric transfusion", aiming to assist in the understanding and implementing the blood transfusion section of this guideline.
Humans
;
Child
;
Hematologic Diseases/therapy*
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
9.Explanation and interpretation of the compilation of blood transfusion provisions for children undergoing hematopoietic stem cell transplantation in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI ; Ming-Hua YANG
Chinese Journal of Contemporary Pediatrics 2025;27(2):139-143
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Blood transfusion for children undergoing hematopoietic stem cell transplantation is highly complex and challenging. This guideline provides recommendations on transfusion thresholds and the selection of blood components for these children. This article presents the evidence and interpretation of the transfusion provisions for children undergoing hematopoietic stem cell transplantation, with the aim of enhancing the understanding and implementation of the "Guideline for pediatric transfusion".
Humans
;
Hematopoietic Stem Cell Transplantation
;
Child
;
Blood Transfusion/standards*
;
Practice Guidelines as Topic
10.Explanation and interpretation of blood transfusion provisions for critically ill and severely bleeding pediatric patients in the national health standard "Guideline for pediatric transfusion".
Rong HUANG ; Qing-Nan HE ; Ming-Yan HEI ; Ming-Hua YANG ; Xiao-Fan ZHU ; Jun LU ; Xiao-Jun XU ; Tian-Ming YUAN ; Rong ZHANG ; Xu WANG ; Jin-Ping LIU ; Jing WANG ; Zhi-Li SHAO ; Ming-Yi ZHAO ; Yong-Jian GUO ; Xin-Yin WU ; Jia-Rui CHEN ; Qi-Rong CHEN ; Jia GUO ; Rong GUI
Chinese Journal of Contemporary Pediatrics 2025;27(4):395-403
To guide clinical blood transfusion practices for pediatric patients, the National Health Commission has issued the health standard "Guideline for pediatric transfusion" (WS/T 795-2022). Critically ill children often present with anemia and have a higher demand for transfusions compared to other pediatric patients. This guideline provides guidance and recommendations for blood transfusions in cases of general critical illness, septic shock, acute brain injury, extracorporeal membrane oxygenation, non-life-threatening bleeding, and hemorrhagic shock. This article interprets the background and evidence of the blood transfusion provisions for critically ill and severely bleeding children in the "Guideline for pediatric transfusion", aiming to enhance understanding and implementation of this aspect of the guidelines. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(4): 395-403.
Humans
;
Critical Illness
;
Blood Transfusion/standards*
;
Child
;
Hemorrhage/therapy*
;
Practice Guidelines as Topic

Result Analysis
Print
Save
E-mail