1.Pachymic acid promotes brown/beige adipocyte differentiation and lipid metabolism in preadipocytes.
Kunling CHEN ; Xiaobing DOU ; Yiyou LIN ; Danyao BAI ; Yangzhou LUO ; Liping ZHOU
Journal of Zhejiang University. Medical sciences 2025;54(3):333-341
OBJECTIVES:
To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes.
METHODS:
3T3-L1 MBX cells were induced to differentiate into beige adipocytes using a brown cocktail method. The impact of pachymic acid on the viability of 3T3-L1 MBX cells was evaluated using the CCK-8 assay. The formation of lipid droplets following treatment with pachymic acid was observed by oil red O staining. The mRNA expression levels of key browning genes, including uncoupling protein (Ucp) 1, the peroxisome proliferator activated receptor-γ coactivator (Pgc)-1α, and the PR domain-containing protein 16 (Prdm16), as well as the mRNA expression of sterol regulatory element-binding protein (Srebp) 1c, acetyl-coA carboxylase (Acc), fatty acid synthase (Fas), and hormone-sensitive triglyceride lipase (Hsl), adipose triglyceride lipase (Atgl), and carnitine palmitoyltransferase (Cpt) 1 were detected by quantitative reverse transcription polymerase chain reaction. The protein expression of Ucp1, Pgc-1a, and Prdm16 was detected by Western blotting.
RESULTS:
The 3T3-L1 MBX cells were induced in vitro to form beige adipocytes with high expression of key browning genes(Ucp1, Pgc-1α, and Prdm16), and beige adipose-marker genes (Cd137, Tbx1, and Tmem26). Concentrations range of 0-80 μmol/L pachymic acid were non-cytotoxic to 3T3-L1 MBX cells. Pachymic acid treatment significantly inhibited the differentiation of 3T3-L1 MBX cells, resulting in a notable decrease in lipid accumulation. There was a marked increase in the expression of key browning genes and their proteins products, such as Ucp1, Pgc-1α, and Prdm16, while the expressions of fat synthesis-related genes Srebp1c, Acc and Fas were significantly decreased (all P<0.05). The expressions of lipolysis-related genes (Hsl, Atgl, and Cpt1) were significantly increased (all P<0.05). Treatment with 20 μmol/L pachymic acid showed the most pronounced effect.
CONCLUSIONS
Pachymic acid can inhibit fat synthesis and promote lipid decomposition by regulating the brown formation and lipid differentiation of preadipocytes.
Animals
;
Lipid Metabolism/drug effects*
;
Mice
;
Cell Differentiation/drug effects*
;
Adipocytes, Beige/drug effects*
;
3T3-L1 Cells
;
Adipocytes, Brown/drug effects*
;
Triterpenes/pharmacology*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
Uncoupling Protein 1
;
Sterol Regulatory Element Binding Protein 1/metabolism*
2.Shen Qi Wan attenuates renal interstitial fibrosis through upregulating AQP1.
Yiyou LIN ; Jiale WEI ; Yehui ZHANG ; Junhao HUANG ; Sichen WANG ; Qihan LUO ; Hongxia YU ; Liting JI ; Xiaojie ZHOU ; Changyu LI
Chinese Journal of Natural Medicines (English Ed.) 2023;21(5):359-370
Renal interstitial fibrosis (RIF) is the crucial pathway in chronic kidney disease (CKD) leading to the end-stage renal failure. However, the underlying mechanism of Shen Qi Wan (SQW) on RIF is not fully understood. In the current study, we investigated the role of Aquaporin 1 (AQP1) in SQW on tubular epithelial-to-mesenchymal transition (EMT). A RIF mouse model induced by adenine and a TGF-β1-stimulated HK-2 cell model were etablished to explore the involvement of AQP 1 in the protective effect of SQW on EMT in vitro and in vivo. Subsequently, the molecular mechanism of SQW on EMT was explored in HK-2 cells with AQP1 knockdown. The results indicated that SQW alleviated kidney injury and renal collagen deposition in the kidneys of mice induced by adenine, increased the protein expression of E-cadherin and AQP1 expression, and decreased the expression of vimentin and α-smooth muscle actin (α-SMA). Similarly, treatmement with SQW-containing serum significantly halted EMT process in TGF-β1 stimulated HK-2 cells. The expression of snail and slug was significantly upregulated in HK-2 cells after knockdown of AQP1. AQP1 knockdown also increased the mRNA expression of vimentin and α-SMA, and decreased the expression of E-cadherin. The protein expression of vimentin increased, while the expression of E-cadherin and CK-18 significantly decreased after AQP1 knockdown in HK-2 cells. These results revealed that AQP1 knockdown promoted EMT. Furthermore, AQP1 knockdown abolished the protective effect of SQW-containing serum on EMT in HK-2 cells. In sum, SQW attentuates EMT process in RIF through upregulation of the expression of AQP1.
Drugs, Chinese Herbal/pharmacology*
;
Humans
;
Animals
;
Mice
;
Male
;
Cell Line
;
Rats
;
Kidney/physiology*
;
Fibrosis/drug therapy*
;
Renal Insufficiency, Chronic/drug therapy*
;
Adenine
;
Epithelial-Mesenchymal Transition
;
Aquaporin 1/metabolism*
3.Myocardial Protection Effect of Dexmedetomidine in Patients Undergoing Open-heart Surgery under CPB
Qiugu ZENG ; Dafeng LI ; Xiangru CEN ; Yiyou YANG ; Xianqin CHEN ; Baoliu LIN ; Yuexian TAN
Modern Hospital 2017;17(5):752-754
Objective To observe the myocardial protective effect of dexmedetomidine in patients undergoing open-heart surgery under cardiopulmonary bypass (CPB).Methods 50 patients of open-heart surgery under CPB were randomly divided into two groups equally, namely observation group and control group.Observation group was treated with injection of dexmedetomidine at 0.5 μg/kg for 15 min, and then maintained at 0.4 μg/kgoh.The control group was given equal volume of normal saline.Concentrations of IMA and cTnI were determined before anaesthesia (t0), after 30 minutes of CPB (t1) and after surgery (t2).Results IMA and cTnI concentrations of t1 and t2 in the observation group were significantly lower than those in the control group (P<0.05).Conclusion Dexmedetomidine has obvious protective effect on myocardium, which can reduce open-heart surgery of patients with myocardial ischemia reperfusion injury (MIRI).

Result Analysis
Print
Save
E-mail