1.Inhibitory effect of pterostilbene on high glucose-mediated endothelial-to-mesenchymal transition in human retinal microvascular endothelial cells
Xiaolan* WANG ; Hanyi* YANG ; Yimeng ZHANG ; Sida LIU ; Chengming CHEN ; Tingke XIE ; Yixuan CHEN ; Jiayi NING ; Jing HAN
International Eye Science 2025;25(3):359-364
AIM: To investigate the potential inhibitory effect of pterostilbene on the endothelial-to-mesenchymal transition(EndMT)induced by high glucose conditions in human retinal microvascular endothelial cells(HRMECs).METHODS: The optimal concentration of pterostilbene for treating HRMECs was determined using the CCK-8 assay, with 12.5 and 25 μmol/L concentrations selected for subsequent experiments. Four experimental groups were established: control group, high glucose group, high glucose combined with 12.5 μmol/L pterostilbene treatment group, and high glucose combined with 25 μmol/L pterostilbene treatment group. The expression levels of HDAC7 and EndMT-associated markers were detected via Western blot analysis. Cell migration ability was assessed using Transwell migration assays and scratch wound healing tests, while vasculogenic capability was evaluated through tube formation assays.RESULTS: The CCK-8 assay revealed that pterostilbene at a concentration of 22.07 μmol/L inhibited 50% of cell viability in HRMECs. Western blot analysis demonstrated that compared with the control group, the expression levels of HDAC7, ZEB1, Vimentin, and Snail were significantly upregulated in HRMECs cultured in high glucose(all P<0.01), while the expressions of VE-cadherin and CD31 were significantly reduced(all P<0.01). Compared to the high glucose group, the treatment with 12.5 and 25 μmol/L pterostilbene significantly reduced the expression of HDAC7, ZEB1, Vimentin, and Snail under high glucose conditions(all P<0.01). Notably, 25 μmol/L pterostilbene enhanced the expression of VE-cadherin and CD31(all P<0.01). Scratch wound healing tests revealed that HRMECs treated with high glucose exhibited a significantly increased cell migration rate compared to the control group(P<0.05), while the application of 25 μmol/L pterostilbene significantly suppressed HRMECs migration under high glucose conditions(P<0.01). Transwell migration assays demonstrated that the cell migration rate in the high glucose group was significantly higher than that in the control group(P<0.01), with cell migration rate markedly reduced following treatment with both of 12.5 and 25 μmol/L pterostilbene(all P<0.01). The tube formation assay revealed that the ability of HRMECs to form tubular structures was significantly enhanced under high glucose conditions(P<0.01), and both 12.5 and 25 μmol/L of pterostilbene effectively inhibited this effect(all P<0.01).CONCLUSION: Pterostilbene can inhibit HDAC7 expression, suppress EndMT-mediated migration of HRMECs, and impair tube formation under high-glucose conditions.
2.Inhibitory effect of pterostilbene on high glucose-mediated endothelial-to-mesenchymal transition in human retinal microvascular endothelial cells
Xiaolan* WANG ; Hanyi* YANG ; Yimeng ZHANG ; Sida LIU ; Chengming CHEN ; Tingke XIE ; Yixuan CHEN ; Jiayi NING ; Jing HAN
International Eye Science 2025;25(3):359-364
AIM: To investigate the potential inhibitory effect of pterostilbene on the endothelial-to-mesenchymal transition(EndMT)induced by high glucose conditions in human retinal microvascular endothelial cells(HRMECs).METHODS: The optimal concentration of pterostilbene for treating HRMECs was determined using the CCK-8 assay, with 12.5 and 25 μmol/L concentrations selected for subsequent experiments. Four experimental groups were established: control group, high glucose group, high glucose combined with 12.5 μmol/L pterostilbene treatment group, and high glucose combined with 25 μmol/L pterostilbene treatment group. The expression levels of HDAC7 and EndMT-associated markers were detected via Western blot analysis. Cell migration ability was assessed using Transwell migration assays and scratch wound healing tests, while vasculogenic capability was evaluated through tube formation assays.RESULTS: The CCK-8 assay revealed that pterostilbene at a concentration of 22.07 μmol/L inhibited 50% of cell viability in HRMECs. Western blot analysis demonstrated that compared with the control group, the expression levels of HDAC7, ZEB1, Vimentin, and Snail were significantly upregulated in HRMECs cultured in high glucose(all P<0.01), while the expressions of VE-cadherin and CD31 were significantly reduced(all P<0.01). Compared to the high glucose group, the treatment with 12.5 and 25 μmol/L pterostilbene significantly reduced the expression of HDAC7, ZEB1, Vimentin, and Snail under high glucose conditions(all P<0.01). Notably, 25 μmol/L pterostilbene enhanced the expression of VE-cadherin and CD31(all P<0.01). Scratch wound healing tests revealed that HRMECs treated with high glucose exhibited a significantly increased cell migration rate compared to the control group(P<0.05), while the application of 25 μmol/L pterostilbene significantly suppressed HRMECs migration under high glucose conditions(P<0.01). Transwell migration assays demonstrated that the cell migration rate in the high glucose group was significantly higher than that in the control group(P<0.01), with cell migration rate markedly reduced following treatment with both of 12.5 and 25 μmol/L pterostilbene(all P<0.01). The tube formation assay revealed that the ability of HRMECs to form tubular structures was significantly enhanced under high glucose conditions(P<0.01), and both 12.5 and 25 μmol/L of pterostilbene effectively inhibited this effect(all P<0.01).CONCLUSION: Pterostilbene can inhibit HDAC7 expression, suppress EndMT-mediated migration of HRMECs, and impair tube formation under high-glucose conditions.
3.Bugansan Regulates R-spondin1/Wnt3a-mediated Intestinal Injury to Ameliorate Digestion and Absorption Dysfunction in Rat Model of Aging Induced by D-galactose
Yixuan WANG ; Ran HUO ; Jin TIAN ; Fang FANG ; Na LIU ; Jiepeng WANG ; Chaoyi FANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):19-27
ObjectiveTo elucidate the correlation between alterations in digestion and absorption functions and hepatic deficiency states in aging rats based on the R-spondin1/Wnt3a signaling pathway, and reveal the intervention mechanism of Bugansan. MethodsForty-eight SPF-grade male SD rats were randomly assigned to six groups: blank control, model, low-, medium-, and high-dose (7.03, 14.06, 28.12 g·kg-1, respectively) Bugansan, and vitamin E (suspension, 27 mg·kg-1), with 8 rats in each group. The rat model of aging was established by intraperitoneal injection of D-galactose (400 mg·kg-1), while the blank control group was injected with normal saline. Since the day of modeling, rats in intervention groups received corresponding agents by gavage, and those in blank control and model groups received an equal volume of normal saline (10 mL·kg-1). General biological features such as fur color, activity, body mass, water intake, and food intake were observed. Meanwhile, the content of malondialdehyde (MDA) and the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the serum were measured to assess aging. Grip strength and the content of total bile acids (TBA) and the activity of α-amylase (AMY) in the serum were measured to evaluate hepatic deficiency states. The activity of β-galactosidase (β-gal) in the duodenum was measured to evaluate intestinal senescence. The levels of glucagon-like peptide-1 (GLP-1), vasoactive intestinal peptide (VIP), and D-xylose in the serum were determined to assess digestion and absorption functions of the small intestine. Hematoxylin-eosin staining was conducted to observe pathological changes of the duodenum to assess the small intestine damage. Immunohistochemical staining was employed to visualize the expression of B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) and leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) in the duodenal tissue. Moreover, Real-time quantitative polymerase chain reaction (Real-time PCR) was utilized to quantify the mRNA levels of Ki67, Bmi1, and Lgr5 to assess proliferation and regeneration of the small intestine. Additionally, the mRNA levels of R-spondin1, Wnt3a, β-catenin, and glycogen synthase kinase-3β (GSK-3β) and the protein levels of R-spondin1, Wnt3a, β-catenin, and phosphorylated GSK-3β (p-GSK-3β) in the duodenum were determined by Real-time PCR and Western blot, respectively, to analyze the mechanisms of intestinal digestion and absorption dysfunction in aging rats and the regulatory characteristics of Bugansan. ResultsCompared with blank control group, the model group showed decreases in body mass, water intake, food intake, grip strength, activities of SOD, GSH-Px, and AMY in the serum and content of GLP-1, VIP and D-xylose in the serum (P<0.05), increases in the content of MDA and TBA in the serum and β-gal activity in the duodenum (P<0.05), reductions in villus length, villus width, crypt depth, and villi/crypt (V/C) value, down-regulated mRNA and protein levels of Ki67, Lgr5, Bmi1, R-spondin1, Wnt3a, β-catenin, and up-regulated level of GSK-3β, phosphorylation (p)-GSK-3β (P<0.05). Compared with the model group, Bugansan increased the body mass, water intake, food intake, grip strength, and activities of SOD, GSH-Px, and AMY and levels of GLP-1, VIP and D-xylose in the serum (P<0.05), while decreasing the content of MDA and TBA in the serum and β-gal activity in the duodenum (P<0.05). Furthermore, Bugansan increased the villus length, villus width, crypt depth, and V/C value, up-regulated the mRNA and protein levels of Ki67, Lgr5, Bmi1, R-spondin1, Wnt3a, β-catenin, and down-regulated the level of GSK-3β and p-GSK-3β (P<0.05). ConclusionAging rats exhibit obvious impairments in digestion and absorption functions, accompanied by a state of hepatic deficiency. The traditional Chinese medicine approach of tonifying liver Qi effectively ameliorates aging-related changes by modulating the R-spondin1/Wnt3a signaling pathway to mitigate intestinal senescence and enhance digestion and absorption functions, ultimately contributing to the delay of aging.
4.Current Status and Prospects of Gene Therapy for Primary Ciliary Dyskinesia
Wanqing LU ; Yixuan LI ; Miao HE ; Xinlun TIAN ; Yaping LIU
JOURNAL OF RARE DISEASES 2025;4(3):377-383
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disease characterized by structural or functional abnormalities of motile cilia. It often presents clinically with recurrent respiratory infections, situs inversus, hydrocephalus, and infertility. Currently, there is no clinical treatment to directly restore ciliary motility in PCD patients.In recent years, researchers have explored gene therapy methods such as gene replacement, gene editing, and RNA replacement
5.Mediating effects of self-efficacy and self-management behaviors on depressive symptoms and glycemic control among elderly patients with type 2 diabetes mellitus
LU Lijun ; YUAN Lei ; LI Dianjiang ; LU Kun ; ZHU Yixuan ; WANG Zhiyong ; LIU Sijun
Journal of Preventive Medicine 2025;37(5):455-459
Objective:
To analyze the mediating effects of self-efficacy and self-management behaviors on the relationship between depression symptoms and glycemic control among elderly patients with type 2 diabetes mellitus (T2DM), so as to provide references for optimizing health management of elderly T2DM patients.
Methods:
T2DM patients aged ≥60 years from 8 community health service centers in Nanjing City were selected using a convenience sampling method. Basic information such as gender and age was collected through questionnaires. Depressive symptoms, self-efficacy, and self-management behaviors were assessed using the Patient Health Questionnaire, the Diabetes Self-Efficacy Scale, and the Diabetes Self-Management Behavior Scale, respectively. Glycated hemoglobin (HbA1c) was measured to evaluate glycemic control. A mediating effect model was constructed to analyze the mediating effects of self-efficacy and self-management behaviors on the relationship between depressive symptoms and glycemic control.
Results:
A total of 567 elderly T2DM patients were included, with a median age of 70.00 (interquartile range, 7.50) years. There were 248 males (43.74%) and 319 females (56.26%). The median scores of self-efficacy, self-management behaviors, depressive symptoms, and HbA1c were 3.89 (interquartile range, 0.78), 4.45 (interquartile range, 1.55), 4.00 (interquartile range, 6.00), and 6.80% (interquartile range, 1.40%), respectively. The mediating effect analysis showed that depressive symptoms indirectly affected glycemic control among elderly T2DM patients through the independent mediating effects of self-efficacy (β=0.028, 95%CI: 0.016-0.043) and self-management behaviors (β=0.009, 95%CI: 0.003-0.016), as well as the chain mediating effect of both (β=0.025, 95%CI: 0.017-0.035). The mediating effects of self-efficacy and self-management behaviors accounted for 36.66% and 11.35% of the total effect, respectively, while the chain mediating effect accounted for 32.15% of the total effect.
Conclusion
Self-efficacy and self-management behaviors play mediating roles in the relationship between depressive symptoms and glycemic control among elderly T2DM patients.
6.Dynamic gait parameters reveal long-term compensatory characteristics in knee joint function recovery following anterior cruciate ligament reconstruction: A retrospective cohort study.
Qitai LIN ; Zehao LI ; Meiming LI ; Yongsheng MA ; Wenming YANG ; Yugang XING ; Yang LIU ; Ruifeng LIANG ; Yixuan ZHANG ; Ruipeng ZHAO ; Wangping DUAN ; Pengcui LI ; Xiaochun WEI
Chinese Medical Journal 2025;138(22):3016-3018
7.A cisplatin prodrug-based self-assembling ozone delivery nanosystem sensitizes radiotherapy in triple-negative breast cancer.
Tianyue XU ; Dan ZHENG ; Meixu CHEN ; Linlin SONG ; Zhihui LIU ; Yan CHENG ; Yujie ZHAO ; Liwen HUANG ; Yixuan LI ; Zhankun YANG ; Cong LI ; Biao DONG ; Jing JING ; Hubing SHI
Acta Pharmaceutica Sinica B 2025;15(5):2703-2722
Lacking therapeutic targets highlights the crucial roles of chemotherapy and radiotherapy in the clinical management of triple-negative breast cancer (TNBC). To relieve the side effects of the chemoradiotherapy combination regimen, we design and develop a self-assembled micelle nanosystem consisting of perfluorocarbon chain-modified cisplatin prodrug. By incorporating perfluorodecalin, this nanosystem can effectively carry ozone and promote irradiation-derived reactive oxygen species (ROS) production. By leveraging the perfluorocarbon sidechain, the nanosystem exhibits efficient internalization by TNBC cells and effectively escapes from lysosomal entrapment. Under X-ray irradiation, ozone-generated ROS disrupts the intracellular redox balance, thereby facilitating the release of cisplatin in a reduction-responsive manner mediated by reduced glutathione. Moreover, oxygen derived from ozone decomposition enhances the efficacy of radiotherapy by alleviating tumor hypoxia. Notably, the combination of irradiation with ozone-loaded cisplatin prodrug nano system synergistically prompts antitumor efficacy and reduces cellular/systemic toxicity in vitro and in vivo. Furthermore, the combo regimen remodels the tumor microenvironment into an immune-favored state by triggering immunogenic cell death and relieving hypoxia, which provides a promising foundation for a combination regimen of immunotherapy. In conclusion, our nanosystem presents a novel strategy for integrating chemotherapy and radiotherapy to optimize the efficacy and safety of TNBC clinical treatment.
8.Interleukin-33 Knockout Promotes High Mobility Group Box 1 Release from Astrocytes by Acetylation Mediated by P300/CBP-Associated Factor in Experimental Autoimmune Encephalomyelitis.
Yifan XIAO ; Liyan HAO ; Xinyi CAO ; Yibo ZHANG ; Qingqing XU ; Luyao QIN ; Yixuan ZHANG ; Yangxingzi WU ; Hongyan ZHOU ; Mengjuan WU ; Mingshan PI ; Qi XIONG ; Youhua YANG ; Yuran GUI ; Wei LIU ; Fang ZHENG ; Xiji SHU ; Yiyuan XIA
Neuroscience Bulletin 2025;41(7):1181-1197
High mobility group box 1 (HMGB1), when released extracellularly, plays a pivotal role in the development of spinal cord synapses and exacerbates autoimmune diseases within the central nervous system. In experimental autoimmune encephalomyelitis (EAE), a condition that models multiple sclerosis, the levels of extracellular HMGB1 and interleukin-33 (IL-33) have been found to be inversely correlated. However, the mechanism by which IL-33 deficiency enhances HMGB1 release during EAE remains elusive. Our study elucidates a potential signaling pathway whereby the absence of IL-33 leads to increased binding of P300/CBP-associated factor with HMGB1 in the nuclei of astrocytes, upregulating HMGB1 acetylation and promoting its release from astrocyte nuclei in the spinal cord of EAE mice. Conversely, the addition of IL-33 counteracts the TNF-α-induced increase in HMGB1 and acetylated HMGB1 levels in primary astrocytes. These findings underscore the potential of IL-33-associated signaling pathways as a therapeutic target for EAE treatment.
Animals
;
Encephalomyelitis, Autoimmune, Experimental/metabolism*
;
Astrocytes/metabolism*
;
Interleukin-33/metabolism*
;
HMGB1 Protein/metabolism*
;
Acetylation
;
Mice, Knockout
;
Mice, Inbred C57BL
;
p300-CBP Transcription Factors/metabolism*
;
Mice
;
Spinal Cord/metabolism*
;
Cells, Cultured
;
Female
;
Signal Transduction
9.ARID1A IDR targets EWS-FLI1 condensates and finetunes chromatin remodeling.
Jingdong XUE ; Siang LV ; Ming YU ; Yixuan PAN ; Ningzhe LI ; Xiang XU ; Qi ZHANG ; Mengyuan PENG ; Fang LIU ; Xuxu SUN ; Yimin LAO ; Yanhua YAO ; Juan SONG ; Jun WU ; Bing LI
Protein & Cell 2025;16(1):64-71
10.ALKBH5 exacerbates psoriatic dermatitis in mice by promoting angiogenesis.
Chengfang ZHANG ; Fei LI ; Bao CHAI ; Jian JIANG ; Yinlian ZHANG ; Xuemei LI ; Jingyu ZHANG ; Yuqiong HUANG ; Zilin JIN ; Yixuan Wang WAN ; Suwen LIU ; Nan YU ; Hongxiang CHEN
Frontiers of Medicine 2025;19(4):653-664
Psoriasis is a chronic inflammatory skin disease, and its pathogenesis is largely modulated by abnormal angiogenesis. Previous research has indicated that AlkB homolog 5 (ALKBH5), an important demethylase affecting N6-methyladenosine (m6A) modification, plays a role in regulating angiogenesis in cardiovascular and eye diseases. Our present study found that ALKBH5 was upregulated and co-localized with cluster of differentiation 31 (CD31) in the skin of IMQ group compared with control group. ALKBH5-deficient mice decreased IMQ-induced psoriatic dermatitis and exhibited histological improvements, including decreased epidermal thickness, hyperkeratosis, numbers of dermal capillary vessels and inflammatory cell infiltration. ALKBH5-KO mice alleviated angiogenesis in psoriatic lesions by downregulating the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. Additionally, the expression of ALKBH5 was significantly upregulated in IL-17A-induced human umbilical vein endothelial cells (HUVECs), which further promoted the expression of angiogenesis-related cytokines and endothelial cell proliferation. Cell proliferation and angiogenesis were suppressed in ALKBH5 knockdown group, whereas ALKBH5 overexpression promoted these processes. The regulation of angiogenesis in HUVECs by ALKBH5 was facilitated through the AKT-mTOR pathway. Collectively, ALKBH5 plays a pivotal role in psoriatic dermatitis and angiogenesis, which may offer a new potential targets for treating psoriasis.
Animals
;
Psoriasis/chemically induced*
;
Mice
;
Humans
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
AlkB Homolog 5, RNA Demethylase/genetics*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Cell Proliferation
;
Mice, Knockout
;
Disease Models, Animal
;
Signal Transduction
;
Male
;
Skin/blood supply*
;
Mice, Inbred C57BL
;
Angiogenesis


Result Analysis
Print
Save
E-mail