1.Toxicity of lunar dust simulant exposure via the digestive system: Microbiota dysbiosis and multi-organ injury.
Yixiao CHEN ; Yiwei LIU ; Shiyue HE ; Xiaoxiao GONG ; Qiyun CHENG ; Ya CHEN ; Xinyue HU ; Zhenxing WANG ; Hui XIE
Journal of Central South University(Medical Sciences) 2025;50(8):1289-1305
OBJECTIVES:
As early as the Apollo 11 mission, astronauts experienced ocular, skin, and upper airway irritation after lunar dust (LD) was brought into the return cabin, drawing attention to its potential biological toxicity. However, the biological effects of LD exposure through the digestive system remain poorly understood. This study aimed to evaluate the impact of digestive exposure to lunar dust simulant (LDS) on gut microbiota and on the intestine, liver, kidney, lung, and bone in mice.
METHODS:
Eight-week-old female C57BL/6J mice were used. LDS was used as a substitute for lunar dust, and Shaanxi loess was used as Earth dust (ED). Mice were randomly divided into a phosphate buffered saline (PBS) group, an ED group (500 mg/kg), and a LDS group (500 mg/kg), with assessments at days 7, 14, and 28. Mice were gavaged once every 3 days, with body weight recorded before each gavage. At sacrifice, fecal samples were analyzed by 16S ribosomal RNA (rRNA) sequencing; inflammatory cytokine expression [interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α)] in intestinal, liver, and lung tissues was measured by real-time reverse transcription PCR (real-time RT-PCR); hematoxylin and eosin (HE) staining was performed on lung, liver, and intestinal tissues; Periodic acid-Schiff (PAS) staining was used to assess the integrity of the intestinal mucus barrier, and immunohistochemical staining was performed to evaluate the expression of mucin-2 (MUC2). Serum biochemical tests assessed hepatic and renal function. Femoral bone mass was analyzed by micro-computed tomography (micro-CT); osteoblasts and osteoclasts were assessed by osteocalcin (OCN) and tartrate-resistant acid phosphatase (TRAP) staining. Bone marrow immune cell subsets were analyzed by flow cytometry.
RESULTS:
At day 10, weight gain was slowed in ED and LDS groups. At days 22 and 28, body weight in both ED and LDS groups was significantly lower than controls (both P<0.05). LDS exposure increased microbial species richness and diversity at day 7. Compared with the PBS and ED groups, mice in the LDS group showed increased relative abundance of Deferribacterota, Desulfobacterota, and Campylobacterota, and decreased Firmicutes, with increased Helicobacter typhlonius and reduced Lactobacillus johnsonii and Lactobacillusmurinus. HE and PAS staining of the colon showed that mucosal structural disruption and goblet cell loss were more severe in the LDS group. In addition, immunohistochemistry revealed a significant downregulation of MUC2 expression in this group (P<0.05). No obvious pathological alterations were observed in liver HE staining among the 3 groups, and none of the groups exhibited notable hepatic or renal dysfunction. HE staining of the lungs in the ED and LDS groups showed increased perivascular inflammatory cell infiltration (both P<0.05).
CONCLUSIONS
LDS exposure via the digestive route induces gut dysbiosis, intestinal barrier disruption, pulmonary inflammation, bone loss, and bone marrow immune imbalance. These findings indicate that LD exposure poses potential health risks during future lunar missions. Targeted restoration of beneficial gut microbiota may represent a promising strategy to mitigate LD-related health hazards.
Animals
;
Dust
;
Mice
;
Mice, Inbred C57BL
;
Dysbiosis/etiology*
;
Female
;
Gastrointestinal Microbiome/drug effects*
;
Moon
;
Liver/metabolism*
;
Digestive System/microbiology*
;
Lung/metabolism*
;
Kidney
2.Effects of lunar soil simulant and Earth soil on lung injury in mice.
Xiaoxiao GONG ; Shiyue HE ; Yixiao CHEN ; Yiwei LIU ; Qiyun CHENG ; Ya CHEN ; Xinyue HU ; Zhenxing WANG ; Hui XIE
Journal of Central South University(Medical Sciences) 2025;50(8):1306-1319
OBJECTIVES:
Due to prolonged exposure to cosmic radiation and meteorite impacts, lunar surface dust forms nanoscale angular particles with strong electrostatic adsorption properties. These dust particles pose potential inhalation risks, yet their pulmonary toxicological mechanisms remain unclear. Given the need for dust exposure protection in future lunar base construction and resource development, this study established an acute exposure model using lunar soil simulant (LSS) and used Earth soil (ES; Loess from Shaanxi, China) as a comparison to investigate lung injury mechanisms.
METHODS:
C57BL/6 mice were randomly assigned to 3 groups: Phosphate buffered saline (PBS), LSS, and ES, with 5 to 7 mice per group. Mice in the LSS and ES groups received a single intratracheal instillation to induce acute inhalation exposure. Body weight was monitored for 28 days. Mice were euthanized at days 3, 7, 14, and 28 post-exposure, and peripheral blood, bronchoalveolar lavage fluid (BALF), and lung tissues were collected. Immune cell subsets in BALF were analyzed using flow cytometry. Hematoxylin-eosin (HE) staining assessed lung structure and inflammation; periodic acid-Schiff (PAS) staining evaluated airway mucus secretion; Masson staining examined collagen deposition. Real-time reverse transcription PCR (real-time RT-PCR) was used to measure the mRNA expression of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and epithelial barrier genes (Occludin, Cadherin-1, and Zo-1). Lung tissues at day 7 were subjected to transcriptomic sequencing, followed by immune infiltration and pathway enrichment analyses to determine immunoregulatory mechanisms.
RESULTS:
Body weight in the ES group progressively declined after day 18 (all P<0.05), while the LSS group showed no significant changes compared with the control group. HE staining showed both LSS and ES induced inflammatory cell infiltration around airways and vasculature, which persisted for 28 days but gradually lessened over time. PAS staining revealed marked mucus hypersecretion in the LSS group at day 3, followed by gradual recovery; no significant mucus changes were observed in the ES group. Masson staining indicated no obvious pulmonary fibrosis in either group within 28 days. Real-time RT-PCR demonstrated significant upregulation of IL-1β and TNF-α in both LSS and ES groups, peaking on day 7, accompanied by downregulation of epithelial barrier genes (Occludin, Cadherin-1, and Zo-1)(all P<0.05). Transcriptomic analysis showed that both LSS and ES activated chemokine-related pathways and enriched leukocyte migration and neutrophil recruitment pathways. Further validation revealed upregulation of CXCL2 and MMP12 in the LSS group, whereas CXCL3 and MMP12 were predominantly elevated in the ES group.
CONCLUSIONS
Both LSS and ES can induce sustained lung injury and neutrophil infiltration in mice, though the underlying molecular mechanisms differ. Compared with ES, exposure to LSS additionally triggers a transient eosinophilic response, suggesting that lunar dust particles possess stronger immunostimulatory potential and higher biological toxicity.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Soil
;
Lung Injury/etiology*
;
Dust
;
Bronchoalveolar Lavage Fluid
;
Moon
;
Lung/pathology*
;
Inhalation Exposure/adverse effects*
;
Male
3.Memory Reconsolidation Updating in Substance Addiction: Applications, Mechanisms, and Future Prospects for Clinical Therapeutics.
Shihao HUANG ; Xiaoxing LIU ; Zhonghao LI ; Yue SI ; Liping YANG ; Jiahui DENG ; Yixiao LUO ; Yan-Xue XUE ; Lin LU
Neuroscience Bulletin 2025;41(2):289-304
Persistent and maladaptive drug-related memories represent a key component in drug addiction. Converging evidence from both preclinical and clinical studies has demonstrated the potential efficacy of the memory reconsolidation updating procedure (MRUP), a non-pharmacological strategy intertwining two distinct memory processes: reconsolidation and extinction-alternatively termed "the memory retrieval-extinction procedure". This procedure presents a promising approach to attenuate, if not erase, entrenched drug memories and prevent relapse. The present review delineates the applications, molecular underpinnings, and operational boundaries of MRUP in the context of various forms of substance dependence. Furthermore, we critically examine the methodological limitations of MRUP, postulating potential refinement to optimize its therapeutic efficacy. In addition, we also look at the potential integration of MRUP and neurostimulation treatments in the domain of substance addiction. Overall, existing studies underscore the significant potential of MRUP, suggesting that interventions predicated on it could herald a promising avenue to enhance clinical outcomes in substance addiction therapy.
Humans
;
Substance-Related Disorders/psychology*
;
Memory Consolidation/physiology*
;
Animals
;
Extinction, Psychological/physiology*
4.Mechanistic insights into the GEF activity of the human MON1A/CCZ1/C18orf8 complex.
Yubin TANG ; Yaoyao HAN ; Zhenpeng GUO ; Ying LI ; Xinyu GONG ; Yuchao ZHANG ; Haobo LIU ; Xindi ZHOU ; Daichao XU ; Yixiao ZHANG ; Lifeng PAN
Protein & Cell 2025;16(8):739-744
5.Advancements in research on the preventive and curative roles of glycyrrhetinic acid and its derivatives in neurodegenerative disease
Yixiao LIU ; Xinyuan HAN ; Yitong XIAO ; Xinzhuo YU ; Tianyuan YE
Acta Laboratorium Animalis Scientia Sinica 2024;32(7):923-932
The annual incidence of neurodegenerative disease has been increasing with the aging of the global population,seriously affecting the quality of life of elderly patients and imposing a heavy burden on society.Glycyrrhetinic acid,which inhibits neuroinflammation and protects neurons,is one of the main active ingredients of the traditional Chinese medicine Glycyrrhiza glabra.Increasing numbers of studies are focusing on the mechanism of action of glycyrrhetinic acid and its derivatives in neurodegenerative disease.This review summarizes studies on the effects and mechanisms of action of glycyrrhetinic acid and its derivatives in Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,multiple sclerosis,and cerebellar atrophy.Additionally,the future applications of glycyrrhetinic acid and its derivatives in neurodegenerative disorders are discussed.
6.Effects of acupuncture combined with Buyang Huanwu Decoction on the cerebral blood flow hypo perfusion model rats with carotid artery stenosis based on high-throughput sequencing
Hongtao YU ; Ruizhu GUO ; Yixiao LIU ; Zhiqiang SONG ; Zhongyang LIU ; Yiping WANG ; Haichun ZHOU
International Journal of Traditional Chinese Medicine 2024;46(3):330-335
Objective:To explore the effects of acupuncture combined with Buyang Huanwu Decoction on intestinal flora in cerebral blood flow hypo perfusion model rats with carotid artery stenosis.Methods:Totally 40 rats were randomly divided into sham-operation group, model group, TCM treatment group and acupuncture and drug combination treatment group, with 10 rats in each group. Except the sham-operation group, the other groups were prepared cerebral ischemia model by needle control and thread embolism method. TCM treatment group received Buyang Huanwu Decoction 100 mg/kg for gavage, once a day, and the intervention lasted for 2 weeks. In the acupuncture and drug combination group, based on the TCM treatment group, Baihui and its left and right sides of 2 mm were selected for acupuncture, once a day, and continuous intervention was performed for 2 weeks. Neurological function evaluation and behavioral function score were performed 7 and 14 days after administration, respectively. 16S rRNA sequencing was used to comprehensively characterize the structure and composition of fecal microflora of rats in each group. Linear discriminant analysis Effect Size (LEfSe) was used to analyze the difference of intestinal bacteria among groups.Result:On the 7th and 14th day after administration, compared with the model group, the neurological function score in the TCM treatment group and the acupuncture and drug combination group decreased ( P<0.05), and the behavioral function score increased ( P<0.05). Compared with model group, the Shannon index of TCM treatment group and acupuncture and drug combination group increased ( P<0.05). The abundance of Firmicutes increased ( P<0.05), and the abundance of Bacteroidetes and Proteobacteria decreased ( P<0.05); the abundance of Clostridia increased ( P<0.05), and the abundance of Gammaproteobacteria decreased ( P<0.05). The abundance of Escherichia-Shigella and Bacteroides decreased ( P<0.05); the abundance of lactobacillus significantly increased ( P<0.05). Conclusion:Acupuncture combined with Buyang Huanwu Decoction can improve the symptoms of cerebral hypoperfusion model rats with carotid artery stenosis, and the mechanism may be to increase the abundance of probiotics.
7.Effects of electroacupuncture with"Zhi San Zhen"on Notch signaling pathway and synaptic plasticity in 5xFAD mice
Huaneng WEN ; Run LIN ; Yixiao WANG ; Bingshui WANG ; Lu LIU ; Chuanyao LIU ; Canxin CAI ; Shaoyang CUI ; Mingzhu XU
Chinese Journal of Tissue Engineering Research 2024;28(32):5148-5153
BACKGROUND:Alzheimer's disease is a degenerative neurological disorder characterized primarily by cognitive impairment.Acupuncture is a kind of traditional Chinese medicine therapy for treating Alzheimer's disease,but its mechanism is not yet clear. OBJECTIVE:To observe the effects of electroacupuncture with"Zhi San Zhen"on the Notch signaling pathway,β-amyloid protein(Aβ)and synaptic plasticity in 5xFAD mice. METHODS:Sixteen male,6-month-old 5xFAD mice,SPF-grade,were randomly divided into the electroacupuncture with"Zhi San Zhen"group(electroacupuncture group)and the model group,with eight mice in each group.Eight SPF-grade,male,6-month-old C57BL/6 mice were used as the wild control(wild)group.The electroacupuncture group received electroacupuncture with"Zhi San Zhen"intervention,5 times a week for 4 consecutive weeks.The model group and the wild group did not receive electroacupuncture intervention.The Morris water maze was used to preliminarily assess their learning and memory abilities.Thioflavin S staining was performed to detect Aβ plaque deposition.Western blot and real-time quantitative polymerase chain reaction(RT-qPCR)were used to measure the expression levels of transmembrane receptor protein Notch-1,Notch 1 intracellular domain(NICD),hairy and enhancer of split 1(Hes 1),hairy and enhancer of split 5(Hes 5),synaptophysin(SYN),postsynaptic density protein-95(PSD-95),and Aβ. RESULTS AND CONCLUSION:Compared with the model group,the wild group and the electroacupuncture group showed shortened escape latency,increased platform crossing times,and longer target quadrant dwell time(P<0.05).Compared with the wild group,the model group had significantly increased deposition of Aβ plaques,while electroacupuncture with"Zhi San Zhen"inhibited the deposition of Aβ plaques in the hippocampus of 5xFAD mice(P<0.05).Compared with the wild group,the model group had decreased mRNA levels of SYN,PSD-95,Notch 1,NICD,Hes 1,and Hes 5 in the hippocampal tissue of mice,and increased mRNA levels of Aβ(P<0.05).Electroacupuncture with"Zhi San Zhen"increased the mRNA levels of SYN,PSD-95,Notch 1,NICD,Hes 1,and Hes 5 in the hippocampal tissue,and decreased the mRNA level of Aβ(P<0.05).Compared with the Wild group,the model group had decreased protein expression levels of SYN,PSD-95,Notch 1,NICD,Hes 1,and Hes 5 in the hippocampal tissue of mice,and increased protein expression levels of Aβ(P<0.05).Electroacupuncture with"Zhi San Zhen"upregulated the protein expression levels of SYN,PSD-95,Notch 1,NICD,Hes 1,and Hes 5,and inhibited the protein expression of Aβ(P<0.05).To conclude,electroacupuncture with"Zhi San Zhen"can improve the learning and memory abilities of 5xFAD mice,possibly by inhibiting the deposition of Aβ protein and activating the Notch signaling pathway in the hippocampus to enhance synaptic plasticity.
8.Advances in the application of 5×FAD transgenic mice in Alzheimer's disease research
Yiduan LIU ; Yixiao LIU ; Xinyuan HAN ; Yitong XIAO ; Tianyuan YE
Acta Laboratorium Animalis Scientia Sinica 2024;32(2):260-274
Transgenic 5 × FAD mice are APP/PS1 transgenic mice carrying five familial Alzheimer's disease(AD)gene mutations.Beta-amyloid precursor protein(amyloid precursor protein,APP)expression is related to the K670N/M671L(Swedish),1716V(Florida),and V7171(London)mutations,and presenilin 1(PSI)is affected by the M146L and L286V mutations.5 × FAD mice express high levels of β-amyloid in the brain at 1.5 months old,and neuritic plaques began to appear at 2 months old.The pathological phenotypes of 5 × FAD mice include amyloid plaque aggregation,neuronal loss,gliosis,and memory dysfunction,while their biological characteristics include changes in the formation of brain β-amyloid plaques,hyperphosphorylation of Tau protein,synaptic dysfunction,neuroinflammatory response,mitochondrial dysfunction,blood-brain barrier injury,neuronal injury,endoplasmic reticulum stress,and eye lesions.As a classic animal model of AD,5 × FAD transgenic mice can simulate the neuropathological process and behavioral manifestations of late-stage AD in humans,and these mice are thus widely used in research into the pathogenesis of AD and the development of new drugs.In this review,we summarize the model construction,biological background,and biological characteristics of 5 x FAD transgenic mice,and the development and application of drugs for the prevention and treatment of AD,to provide references for the application of 5 x FAD transgenic transgenic mice in AD research.
9.Dayuanyin Regulates TLR/MAPK/NF-κB Pathway for Preventing and Treating Acute Lung Injury Induced by H1N1 Infection
Chengze LI ; Fuhao CHU ; Yuan LI ; Yunze LIU ; Haocheng ZHENG ; Sici WANG ; Yixiao GU ; Wanhong ZHU ; Ruoshi ZHANG ; Xingjian SONG ; Cong GAI ; Xia DING
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(18):52-60
ObjectiveTo investigate the therapeutic effect of Dayuanyin on acute lung injury induced by H1N1 infection and decipher the potential mechanism. MethodThe constituents in Dayuanyin were analyzed by ultra-high performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS). Forty-eight female BALB/c mice were randomized into normal, model, oseltamivir (19.5 mg·kg-1), and low-, medium-, and high-dose (2.73, 5.46, 10.92 g·kg-1) Dayuanyin groups. The normal and model groups were administrated with deionized water by gavage, and the other groups were administrated with the corresponding drugs by gavage. On day 3 of drug administration, the normal group received nasal inhalation of normal saline, and the other groups were inoculated intranasally with A/RP/8/34 (H1N1) for the modeling of influenza virus infection. Mice were administrated with drugs continuously for 7 days and weighed daily. Sampling was performed 12 h after the last administration, and the lung tissue was weighed to calculate the lung index. Hematoxylin-eosin staining was performed to observe the pathological and morphological changes of the lung tissue and bronchi. The cytometric bead array (CBA) was used to measure the serum levels of interferon-gamma (IFN-γ), C-X-C motif ligand 1 (CXCL1), tumor necrosis factor-alpha (TNF-α), chemokine ligand 2 (CCL2), interleukin-12p70 (IL-12p70), chemokine ligand 5 (CCL5), interleukin-1β (IL-1β), chemokine (C-X-C motif) ligand 10 (CXCL10), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-10 (IL-10), interferon-beta (IFN-β), interferon-alpha (IFN-α), and interleukin-6 (IL-6). According to the results of mass spectrometry and network pharmacology, we analyzed the mechanism of Dayuanyin in treating acute lung injury caused by H1N1. The protein levels of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor-kappa B (NF-κB), and their phosphorylated forms were determined by Western blot. The mRNA levels of myeloid differentiation factor 88 (MyD88), Toll-like receptor 3 (TLR3), Toll-like receptor 7 (TLR7), and Toll-like receptor 8 (TLR8) in the lung tissue were measured by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultA total of 57 compounds, including paeoniflorin and baicalein, were detected in Dayuanyin. Compared with the normal group, the model group showed decreased body weight (P<0.01), lung edema and hemorrhage, increased lung index (P<0.01), and elevated levels of IFN-γ, IL-12p70, CCL5, IL-1β, CXCL10, GM-CSF, IFN-β, and IL-6 (P<0.01). Compared with the model group, Dayuanyin attenuated alveolar wall thickening, capillary congestion, and immune cell infiltration, reduced the alterations in body weight and lung index (P<0.01), and down-regulated the protein levels of IFN-γ, IL-12p70, CCL5, IL-1β, CXCL10, GM-CSF, IFN-β, and IL-6 (P<0.01). A total of 57 key genes were predicted by network pharmacological analysis, of which the MAPK signaling pathway was the main target signaling pathway. Compared with the normal group, the model group showed up-regulation in the protein levels of phosphorylation (p)-ERK1/2, p-p38 MAPK, and p-NF-κB (P<0.01) and the mRNA levels of TLR7, TLR8, MyD88, and TLR3 (P<0.05, P<0.01). Compared with the model group, Dayuanyin lowered the phosphorylation levels of ERK1/2, p38 MAPK, and NF-κB p65 in a dose-dependent manner (P<0.01) and down-regulated the mRNA levels of TLR3, TLR7, TLR8, and MyD88 (P<0.01). ConclusionDayuanyin can prevent and control H1N1 infection-induced acute lung injury by inhibiting the TLR/MAPK/NF-κB signaling pathway.
10.UBE2S promotes glycolysis in hepatocellular carcinoma by enhancing E3 enzyme-independent polyubiquitination of VHL
Renyu ZHANG ; Can LI ; Shuai ZHANG ; Lingmin KONG ; Zekun LIU ; Yixiao GUO ; Ying SUN ; Cong ZHANG ; Yule YONG ; Jianjun LV ; Meng LU ; Man LIU ; Dong WU ; Tianjiao ZHANG ; Haijiao YANG ; Ding WEI ; Zhinan CHEN ; Huijie BIAN
Clinical and Molecular Hepatology 2024;30(4):771-792
Background/Aims:
Ubiquitination is widely involved in the progression of hepatocellular carcinoma (HCC) by regulating various cellular processes. However, systematic strategies for screening core ubiquitin-related genes, clarifying their functions and mechanisms, and ultimately developing potential therapeutics for patients with HCC are still lacking.
Methods:
Cox and LASSO regression analyses were performed to construct a ubiquitin-related gene prediction model for HCC. Loss- and gain-of-function studies, transcriptomic and metabolomics analysis were used to explore the function and mechanism of UBE2S on HCC cell glycolysis and growth.
Results:
Based on 1,423 ubiquitin-related genes, a four-gene signature was successfully constructed to evaluate the prognosis of patients with HCC. UBE2S was identified in this signature with the potential to predict the survival of patients with HCC. E2F2 transcriptionally upregulated UBE2S expression by directly binding to its promoter. UBE2S positively regulated glycolysis in a HIF-1α-dependent manner, thus promoting the proliferation of HCC cells. Mechanistically, UBE2S enhanced K11-linkage polyubiquitination at lysine residues 171 and 196 of VHL independent of E3 ligase, thereby indirectly stabilizing HIF-1α protein levels by mediating the degradation of VHL by the proteasome. In particular, the combination of cephalomannine, a small molecule compound that inhibits the expression of UBE2S, and PX-478, an inhibitor of HIF-1α, significantly improved the anti-tumor efficacy.
Conclusions
UBE2S is identified as a key biomarker in HCC among the thousands of ubiquitin-related genes and promotes glycolysis by E3 enzyme-independent ubiquitination, thus serving as a therapeutic target for the treatment of HCC.

Result Analysis
Print
Save
E-mail