1.Multidimensional Analysis of Mechanisms of Nuciferine Against Cerebral Ischemia Based on Transcriptomic Data
Yingying QIN ; Peng LI ; Sha CHEN ; Yan LIU ; Jintang CHENG ; Qingxia XU ; Guohua WANG ; Jing ZHOU ; An LIU ; Chang CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):184-191
ObjectiveStudies have shown that nuciferine has anti-cerebral ischemia effect, but the specific mechanism of action has not been elaborated. Based on the transcriptome results, the pharmacological mechanism of nuciferine against cerebral ischemia was analyzed from multiple dimensions including tissue, cell, pathological process, biological process and signaling pathway. MethodsThirty SD rats were randomly divided into the sham group, model group and nuciferine group(40 mg·kg-1) according to weight. Except for the sham group, the model of middle cerebral artery occlusion(MCAO) was established by thread embolization method after 30 min of administration in the other two groups. Twenty-four hours after surgery, transcriptome sequencing was used to detect the gene expression profiles in the cortex penumbra of rat cerebral tissue, and gene ontology(GO) and kyoto encyclopedia of genes and genomes(KEGG) pathway enrichment analysis were performed for differentially expressed genes. The mechanismof nuciferine against cerebral ischemia was analyzed from 5 dimensions of tissue, cell, pathological process, biological process and signaling pathway by the transcriptome-based multi-scale network pharmacology platform(TMNP). ResultsTranscriptome sequencing and gene quantitative analysis showed that 667 genes were significantly reversed by nuciferine. Further enrichment analysis of KEGG and GO suggested that the pathways of nuciferine involved regulating stress response, ion transport, cell proliferation and differentiation, and synaptic function. TMNP research found that at the tissue level, nuciferine could significantly improve the cerebral tissue injury caused by ischemia. At the cellular and pathological levels, nuciferine could play an anti-cerebral ischemia role by improving the state of various nerve cells, mobilizing immune cells, regulating inflammation. And at the level of biological processes and signaling pathways, nuciferine mainly acted on the processes such as vascular remodeling, inflammation-related signaling pathways, and synaptic signaling. ConclusionCombined with the results of transcriptome sequencing, gene quantitative analysis and TMNP, the mechanism of nuciferine against cerebral ischemia may be related to processes such as intervening in stress response and inflammation, affecting vascular remodeling and regulating synaptic function. These results can provide a basis and reference for further study of the pharmacological mechanism of nuciferine against cerebral ischemia.
2.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
Background:
The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis.
Methods:
We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved.
Results:
Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects.
Conclusions
This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research.
3.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
Background:
The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis.
Methods:
We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved.
Results:
Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects.
Conclusions
This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research.
4.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
Background:
The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis.
Methods:
We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved.
Results:
Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects.
Conclusions
This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research.
5.Impact of Antibody Immune Response and Immune Cells on Osteoporosis and Fractures
Kangkang OU ; Jiarui CHEN ; Jichong ZHU ; Weiming TAN ; Cheng WEI ; Guiyu LI ; Yingying QIN ; Chong LIU
Clinics in Orthopedic Surgery 2025;17(3):530-545
Background:
The immune system plays a critical role in the development and progression of osteoporosis and fractures. However, the causal relationships between antibody immune responses, immune cells, and these bone conditions remain unclear. This study aimed to explore these relationships using Mendelian randomization (MR) analysis.
Methods:
We collected complete blood count data from patients with fractures and healthy individuals and analyzed their differences. Then, we conducted a 2-sample, 2-step MR analysis to investigate the causal effects of antibody immune responses on osteoporosis and fractures, using inverse-variance weighted (IVW) as the primary method. We also explored whether immune cells mediate the pathway between antibodies and osteoporosis or fractures. Finally, we analyzed the functions and expression levels of key genes involved.
Results:
Overall, the fracture group exhibited increased white blood cell count, absolute neutrophil count, absolute monocyte count, platelet count, and their respective proportions, while absolute lymphocyte count, absolute eosinophil count, absolute basophil count, red blood cell count, and their proportions were decreased. We identified 44 causal relationships between antibodies and osteoporosis or fractures, with 7 supported by multiple MR methods, and 5 showing odds ratios significantly deviating from 1 in the IVW analysis. Epstein-Barr virus-related antibodies had a notable impact on osteoporosis and fractures. The human leukocyte antigen (HLA) gene family, particularly HLA-DPB1, emerged as a significant risk factor. However, immune cells were not found to mediate these effects.
Conclusions
This study elucidated the causal relationships between antibody immune responses, immune cells, and osteoporosis or fractures. The HLA gene family plays a crucial role in the interaction between antibodies and these bone conditions, with HLA-DPB1 identified as a key risk gene. Immune cells do not serve as mediators in this process. These findings provide valuable insights for future research.
6.Investigation of an outbreak of group A human G9P [8] rotavirus infectious diarrhea among adults in Chongqing
Yang WANG ; Yuan KONG ; Ning CHEN ; Lundi YANG ; Jiang LONG ; Qin LI ; Xiaoyang XU ; Wei ZHENG ; Hong WEI ; Jie LU ; Quanjie XIAO ; Yingying BA ; Wenxi WU ; Qian XU ; Ju YAN
Shanghai Journal of Preventive Medicine 2025;37(8):663-668
ObjectiveTo investigate and analyze an outbreak of rotavirus infectious diarrhea in a prison in Chongqing Municipality, to provide a basis for adult rotavirus surveillance and prevention, and to explore the public health problems in special settings. MethodsA retrospective survey was conducted to collect and analyze data on individual cases with diarrheal disease on-site. The clinical characteristics, as well as the temporal, spatial and geographical distribution patterns of the epidemic were described. Multi-pathogen detection tests were conducted both on diarrhea cases and environmental samples, with viral genotyping performed on positive samples. A case-control analysis was performed to identify the causes of the outbreak, and an SEIR model was adopted to predict the outbreak trend and evaluate the effectiveness of interventions. ResultsA total of 65 cases were found among the inmates, with an attack rate of 2.03%. The predominant clinical manifestations included diarrhea (89.23%), watery stool (73.85%), and dehydration (18.46%). The epidemic curve indicated a “human-to-human” transmission pattern, with an average incubation period of 5‒6 days. The attack rates among chefs in the main canteen (80.00%, 8/10) and caterers (28.33%, 17/60) were significantly higher than those of other inmates (P<0.05). Multi-pathogen polymerase chain reaction (PCR) testing detected positive for group A rotavirus, with the viral genotyping identified as G9P [8] strain. Factors such as unprotected "bare-handed" food distribution among cases with diarrhea (OR=9.512, 95%CI: 4.261‒21.234) and close contact with diarrhea cases (OR=3.656, 95%CI: 1.719‒7.778) were the possible cause of the outbreak. The SEIR model (r0=5, α=0.3, β1=0.08, β2=0.04) was constructed using prison inmates as susceptible population, aiming at fitting the initial transmission trend of the outbreak, and the epidemic rate declined rapidly after intervention measures were implemented (rt≈0). ConclusionThis rare rotavirus infection diarrhea outbreak among adults in confined settings suggests that the construction of public health prevention and control systems in prison may be overlooked. Cross infection during meal processing and distribution in the canteens of such settings is likely to be the cause of the outbreak. Given the potential neglect of public heath system construction in special settings, it is imperative to enhance the surveillance and monitoring of rotavirus and other intestinal multi-pathogens among adults, as well as the construction of public health prevention and control systems in these special settings.
7.Mitochondrial dysfunction in ovarian aging.
Shuxin MA ; Guangyu LI ; Yingying QIN
Chinese Medical Journal 2025;138(23):3069-3082
Mitochondria serve as multifunctional powerhouses within cells, coordinating essential biological activities that are critical for cell viability, including material metabolism, signal transduction, and the maintenance of homeostasis. They support cells in adapting to complex and fluctuating environments. Oocytes, being the largest cells in multicellular organisms, contain a high number of mitochondria with unique structural characteristics. Mitochondria play active roles in the development and maturation of oocytes. A decline in mitochondrial function negatively affects both the quality and quantity of oocytes, thereby contributing to ovarian aging. However, the specific mechanisms through which mitochondrial dysfunction influences the progression of ovarian aging and impacts reproductive longevity remain unclear. Furthermore, medical strategies aimed at rejuvenating mitochondria to restore ovarian reserve and improve female reproductive potential may open new avenues for clinical treatment. In this review, we summarize the current understanding and key evidence regarding the role of mitochondrial dysfunction in ovarian aging and present emerging medical approaches targeting mitochondria to alleviate premature ovarian aging and enhance reproductive performance.
Humans
;
Female
;
Mitochondria/physiology*
;
Ovary/physiology*
;
Aging/physiology*
;
Animals
;
Oocytes/metabolism*
8.Risk Factors for Severe Hypocalcemia After Thermal Ablation of Secondary Hyperparathyroidism
Zhaoyan DENG ; Qiulin LI ; Xuequn YANG ; Yingying QIN ; Yuanxia JIANG ; Jianguang GAN
Chinese Journal of Medical Imaging 2024;32(6):547-552
Purpose To investigate the risk factors of severe hypocalcemia after ultrasound-guided thermal ablation for secondary hyperparathyroidism.Materials and Methods A retrospective case-control study was used to study 91 patients with uremia complicated with secondary hyperparathyroidism in the First People's Hospital of Yulin from May 2019 to May 2023.All patients underwent ultrasound-guided thermal ablation and were divided into severe hypocalcemia group(SH)and non-SH group according to postoperative blood calcium levels.The difference of clinical data between the two groups was compared,and the independent risk factors of SH were investigated by multivariate Logistic regression analysis.Results A total of 317 glands were ablated in 49 cases of microwave ablation and 42 cases of radiofrequency ablation.SH occurred in 57 cases(62.64%)after ablation.The comparison of clinical data between the two groups showed that there were significant differences in the preoperative intact parathyroid hormone(iPTH),decline rate of iPTH 1 d,preoperative serum alkaline phosphatase,the proportion of parathyroid glands≥4 and the total gland volume between the two groups(all P<0.05).Receiver operating characteristic curve analysis was used to obtain the best cut-off point of iPTH 1 d decline rate,the result was 74.59%,the area under the curve was 0.866(95%CI 0.787-0.945)(P<0.05),the sensitivity was 84.2%,and the specificity was 78.1%.Multivariate Logistic regression analysis showed that preoperative alkaline phosphatase(OR=1.015,95%CI 1.005-1.025,P=0.030)and decline rate of iPTH 1 d≥74.59%(OR=30.423,95%CI 5.938-155.858,P<0.001)and parathyroid glands≥4(OR=4.355,95%CI 1.027-18.469,P=0.046)were independent risk factors for postoperative SH(all P<0.05).Conclusion Preoperative alkaline phosphatase and decline rate of iPTH 1 d≥74.59%and the number of parathyroid glands≥4 are independent risk factors for SH after thermal ablation.
9.Analysis of Clinical Characteristics in 2 Cases of Hypoparathyroidism Sensorineural Deafness and Renal Dysplasia Syndrome
Min LIU ; Liping MENG ; Hui JI ; Ye FAN ; Yingying WANG ; Qin HONG
Journal of Audiology and Speech Pathology 2024;32(5):422-426
Objective To investigate the clinical characteristics and genetic causes in 2 patients with hypopar-athyroidism,sensorineural deafness and renal dysplasia syndrome(HDR).Methods A retrospective analysis of au-diology,gene detection,and other clinical diagnostic data was performed on 2 patients diagnosed with HDR syn-drome.Results Patient 1 failed the newborn hearing screening(otoacoustic emission)and was diagnosed with mod-erate sensorineural hearing loss through audiology evaluation.Follow-up tests of blood calcium and parathyroid hor-mone levels were normal,and ultrasound examinations of the urinary system and parathyroid gland showed no ab-normalities.Patient 2 passed the newborn hearing screening but failed the 3-year-old physical examination(otoa-coustic emission)and was diagnosed with moderate sensorineural hearing loss.Follow-up tests of blood calcium and parathyroid hormone levels were normal,and the parathyroid gland ultrasound showed no abnormalities,but the re-nal ultrasound showed bilateral small renal calculi with normal morphology.Both patients were diagnosed with HDR syndrome through gene testing,and the 2 GAT A3 gene mutation sites(c.867dup,c.65_68dup)causing the disease were both reported for the first time.Conclusion The clinical phenotypes of HDR syndrome are highly variable.Children with suspected hearing loss accompanied by hypoparathyroidism or renal dysfunction should have gene tes-ting and other related examinations as soon as possible to avoid misdiagnosis.
10.Effects of vitamin B1 on function of splenic lymphocytes of mice in simulated microgravity
Shaoyan SI ; Yingying WU ; Yaya QIN ; Ying SHANG ; Xiaoyu MA ; Shujun SONG
Chinese Journal of Immunology 2024;40(12):2496-2499,2505
Objective:To understand the effect of vitamin B1 on lymphocyte function in simulated microgravity.Methods:Splenocytes of mice were isolated,and the rotatary cell culture system was used to simulate microgravity.Lymphocytes were stimulated with mitotic agents Concanavalin A,and cells were treated with different concentrations of vitamin B1,proliferation indexes of lympho-cytes and levels of cytokines in supernatant were detected.Results:Simulated microgravity could inhibit proliferation of splenic lym-phocytes,and decrease levels of cytokines,while vitamin B1 could promote lymphocyte proliferation and cytokines production in cells cultured in simulated microgravity in a dose dependent manner.Conclusion:Vitamin B1 may attenuate the inhibitory effect of simulated microgravity on lymphocytes by regulating cell proliferation and secretion of cytokines.

Result Analysis
Print
Save
E-mail