1.Molecular mechanisms of TPT1-AS1 in regulating epithelial ovarian cancer cell invasion, migration, and angiogenesis by targeting the miR-324/TWIST1 axis.
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):536-543
Objective To explore the mechanism of TPT1-AS1 targeting miR-324/TWIST1 axis to regulate the proliferation, invasion, migration and angiogenesis of epithelial ovarian cancer (EOC) cells, thereby affecting ovarian cancer (OC) progression. Methods RT-qPCR was used to detect the expression of TPT1-AS1 and miR-324 in 29 OC lesions and adjacent tissue samples. The two OC cell models of TPT1-AS1 overexpression and miRNA324 knockdown were constructed, and the cell proliferation, invasion and migration abilities were detected by CCK-8, TranswellTM and scratch test. Western blot analysis was used to detect the protein expression levels of TWIST1, epithelial cadherin (E-cadherin), Vimentin, and vascular endothelial growth factor A (VEGF-A) in OC cells. Fluorescence in situ hybridization (FISH) and RNA pull-down experiments were used to verify the interaction between TPT1-AS1 and miR-324. Immunohistochemistry and Targetscan bioinformatics analysis were used to verify the negative regulatory role of miR-324 in the epithelial-mesenchymal transition (EMT) process. Results The TPT1-AS1 expression was significantly higher in OC tissues than that in para-cancerous tissues, while the miR-324 expression was significantly lower. In SKOV3 cells with TPT1-AS1 overexpression, the miR-324 expression decreased significantly, and TPT1-AS1 was negatively correlated with miR-324. It was also found that TPT1-AS1 and miR-324 were co-expressed in OC cells, and there was a direct binding relationship between them. Down-regulation of miR-324 significantly promoted the proliferation, invasion and migration of SKOV3 cells. Further studies revealed that miR-324 had a binding site at the 3'-UTR end of the TWIST1, a key transcription factor for EMT. Inhibiting miR-324 expression increased the transcription level of TWIST1, leading to a decrease in E-cadherin protein expression and an increase in Vimentin protein expression. Additionally, the downregulation of miR-324 resulted in an increased expression level of VEGF-A protein, which in turn enhanced angiogenesis of OC. Conclusion TPT1-AS1 promotes EOC cell proliferation, invasion, migration and angiogenesis by negatively regulating the miR-324/TWIST1 axis, thus promoting the development of OC. These findings provide new potential targets for the diagnosis and treatment of OC.
Humans
;
MicroRNAs/metabolism*
;
Female
;
Cell Movement/genetics*
;
Ovarian Neoplasms/blood supply*
;
Twist-Related Protein 1/metabolism*
;
Cell Line, Tumor
;
Neovascularization, Pathologic/genetics*
;
Neoplasm Invasiveness
;
Carcinoma, Ovarian Epithelial/metabolism*
;
Nuclear Proteins/metabolism*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
RNA, Long Noncoding/metabolism*
;
Cadherins/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Vimentin/genetics*
;
Angiogenesis
2.Stem-leaf saponins of Panax notoginseng attenuate experimental Parkinson's disease progression in mice by inhibiting microglia-mediated neuroinflammation via P2Y2R/PI3K/AKT/NFκB signaling pathway.
Hui WU ; Chenyang NI ; Yu ZHANG ; Yingying SONG ; Longchan LIU ; Fei HUANG ; Hailian SHI ; Zhengtao WANG ; Xiaojun WU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(1):43-53
Stem-leaf saponins from Panax notoginseng (SLSP) comprise numerous PPD-type saponins with diverse pharmacological properties; however, their role in Parkinson's disease (PD), characterized by microglia-mediated neuroinflammation, remains unclear. This study evaluated the effects of SLSP on suppressing microglia-driven neuroinflammation in experimental PD models, including the 1-methyl-4-phenylpyridinium (MPTP)-induced mouse model and lipopolysaccharide (LPS)-stimulated BV-2 microglia. Our findings revealed that SLSP mitigated behavioral impairments and excessive microglial activation in models of PD, including MPTP-treated mice. Additionally, SLSP inhibited the upregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) and attenuated the phosphorylation of PI3K, protein kinase B (AKT), nuclear factor-κB (NFκB), and inhibitor of NFκB protein α (IκBα) both in vivo and in vitro. Moreover, SLSP suppressed the production of inflammatory markers such as interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha (TNF-α) in LPS-stimulated BV-2 cells. Notably, the P2Y2R agonist partially reversed the inhibitory effects of SLSP in LPS-treated BV-2 cells. These results suggest that SLSP inhibit microglia-mediated neuroinflammation in experimental PD models, likely through the P2Y2R/PI3K/AKT/NFκB signaling pathway. These novel findings indicate that SLSP may offer therapeutic potential for PD by attenuating microglia-mediated neuroinflammation.
Animals
;
Panax notoginseng/chemistry*
;
Saponins/pharmacology*
;
Microglia/immunology*
;
Mice
;
NF-kappa B/immunology*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Male
;
Parkinson Disease/immunology*
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Plant Leaves/chemistry*
;
Neuroinflammatory Diseases/drug therapy*
;
Humans
3.Pathogenic characteristics of viral diarrhea in children under five years of age in sentinel surveillance in Lulong County of Hebei Province, 2010-2020
Wenna ZHAO ; Tong SU ; Yingying LIU ; Qiuli YU ; Yun XIE ; Qi LI
Chinese Journal of Epidemiology 2024;45(3):347-352
Objective:To analyze pathogenic characteristics of viral diarrhea in children aged <5 years in Hebei Province and provide reference for the prevention and control of viral diarrhea in children.Methods:Stool samples were collected from in-patients with diarrhea under five years old from sentinel hospitals in Lulong County of Hebei between 2010 and 2020. ELISA detected rotavirus antigen, and then positive samples were genotyped by semi nested reverse transcription PCR of two rounds. Calicivirus, genotyping astrovirus, and adenovirus were detected by real-time fluorescence quantification PCR. The data were analyzed by using software SPSS 20.0.Results:In 2 925 detected stool samples, 1 919 (65.61%) were positive. The positive rates of rotavirus, calicivirus, adenovirus, and astrovirus were 42.80% (1 252/2 925), 22.12% (647/2 925), 6.19% (181/2 925), 3.56% (104/2 925). Viral diarrhea was mainly caused by rotavirus infection, accounting for 59.30% (1 017/1 715) between 2010 and 2017, and by calicivirus infection accounting for 53.43% (109/204) between 2018 and 2020. The peak positive rate of rotavirus occurred in winter, with the highest rate in infants aged 12 to 17 months (52.96%,483/912). In the rotavirus positive samples, G9P[8] was mainly detected strains (58.31%,730/1 252), followed by G3P[8] (8.15%,102/1 252). The calicivirus-positive samples were mainly infected with norovirus GⅡ. Sequence analysis indicated that the main type was GⅡ.4 [P31] between 2011 and 2016 and GⅡ.3 [P12] in 2018.Conclusions:Rotavirus and calicivirus were the main pathogens causing infant diarrhea in children under five years old in Hebei from 2010 to 2020. Winter was the main epidemic season.
4.Comparison of Direct and Extraction Immunoassay Methods With Liquid Chromatography-Tandem Mass Spectrometry Measurement of Urinary Free Cortisol for the Diagnosis of Cushing’s Syndrome
Danni MU ; Jiadan FANG ; Songlin YU ; Yichen MA ; Jin CHENG ; Yingying HU ; Ailing SONG ; Fang ZHAO ; Qi ZHANG ; Zhihong QI ; Kui ZHANG ; Liangyu XIA ; Ling QIU ; Huijuan ZHU ; Xinqi CHENG
Annals of Laboratory Medicine 2024;44(1):29-37
Background:
Twenty-four-hour urinary free cortisol (UFC) measurement is the initial diagnostic test for Cushing’s syndrome (CS). We compared UFC determination by both direct and extraction immunoassays using Abbott Architect, Siemens Atellica Solution, and Beckman DxI800 with liquid chromatography-tandem mass spectrometry (LC-MS/MS). In addition, we evaluated the value of 24-hr UFC measured by six methods for diagnosing CS.
Methods:
Residual 24-hr urine samples of 94 CS and 246 non-CS patients were collected.A laboratory-developed LC-MS/MS method was used as reference. UFC was measured by direct assays (D) using Abbott, Siemens, and Beckman platforms and by extraction assays (E) using Siemens and Beckman platforms. Method was compared using Passing–Bablok regression and Bland–Altman plot analyses. Cut-off values for the six assays and corresponding sensitivities and specificities were calculated by ROC analysis.
Results:
Abbott-D, Beckman-E, Siemens-E, and Siemens-D showed strong correlations with LC-MS/MS (Spearman coefficient r = 0.965, 0.922, 0.922, and 0.897, respectively), while Beckman-D showed weaker correlation (r = 0.755). All immunoassays showed proportionally positive bias. The areas under the curve were 0.975 for Abbott-D, 0.972 for LCMS/MS, 0.966 for Siemens-E, 0.948 for Siemens-D, 0.955 for Beckman-E, and 0.877 for Beckman-D. The cut-off values varied significantly (154.8–1,321.5 nmol/24 hrs). Assay sensitivity and specificity ranged from 76.1% to 93.2% and from 93.0% to 97.1%, respectively.
Conclusions
Commercially available immunoassays for measuring UFC show different levels of analytical consistency compared to LC-MS/MS. Abbott-D, Siemens-E, and Beckman-E have high diagnostic accuracy for CS.
5.Effect of Gualou Xiebai Banxiatang on Myocardial Microangiogenesis and HIF-1α/VEGF-related Pathways in Myocardial Ischemia Model Rats
Wenhao CHEN ; Weishan MENG ; Hong LI ; Weiwei TIAN ; Qi ZHANG ; Yingying TAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(17):1-9
ObjectiveTo investigate the effect of Gualou Xiebai Banxiatang on cardiac function and myocardial histopathological changes in rats with ischemic myocardial injury, and to observe the effect of myocardial microvascular density (MVD), phosphatidylinositol 3-kinase (PI3K), mammalian target of rapamycin (mTOR), hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) signaling pathways on myocardial microangiogenesis. MethodSeventy male SD rats were randomly selected, with six rats in the normal group. The remaining rats were fed a high-fat diet and injected with isoproterenol hydrochloride (ISO,80 mg·kg-1·d-1, 2 d) to induce a hyperlipidemia-based ischemic heart disease model. After successful modeling, the rats were randomly divided into the model group, high, medium, and low dose groups of Gualou Xiebai Banxiatang, and the metoprolol group. The high, medium, and low dose groups of Gualou Xiebai Banxiatang were given Gualou Xiebai Banxiatang at 10.42, 5.21, 2.61 g·kg-1·d-1, respectively, while the metoprolol group was given metoprolol at 2.6 mg·kg-1·d-1. Both the normal and model groups were given an equivalent volume of physiological saline for 28 days. After the intervention, relevant tests were conducted, and serum was collected to measure heart function-related indicators. Hematoxylin-eosin (HE) and Masson staining were performed on ventricular tissue to observe pathological changes under a light microscope. Immunohistochemistry (IHC) was used to detect the positive expression of platelet endothelial cell adhesion molecule (CD31). Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of N-terminal pro-brain natriuretic peptide (NT-proBNP) and VEGF. Western blot was used to detect the protein expression levels of PI3K/mTOR/HIF-1α/VEGF. ResultCompared with the normal group, the model group showed significantly increased serum levels of LDH, CK, CK-MB, NT-proBNP, and VEGF (P<0.01), significantly increased collagen volume fraction (CVF) (P<0.01), significantly decreased MVD (P<0.01), and elevated protein expression levels of PI3K, mTOR, HIF-1α, and VEGF (P<0.05, P<0.01). Compared with the model group, the metoprolol group had significantly lower serum levels of LDH, CK, CK-MB, and NT-proBNP (P<0.01), significantly higher VEGF levels (P<0.01), significantly decreased CVF (P<0.01), significantly increased MVD (P<0.01), and significantly increased protein expression levels of PI3K, mTOR, and VEGF (P<0.01), with no statistically significant change in HIF-1α protein expression. Compared with the model group, the high and medium dose groups of Gualou Xiebai Banxiatang had decreased serum levels of LDH, CK, CK-MB, and NT-proBNP (P<0.05, P<0.01), increased VEGF levels (P<0.05, P<0.01), significantly reduced CVF (P<0.01), increased MVD (P<0.05, P<0.01), and significantly increased protein levels of PI3K, mTOR, HIF-1α, and VEGF (P<0.01). In the low dose group of Gualou Xiebai Banxiatang, compared with the model group, serum levels of LDH and NT-proBNP were decreased (P<0.05), VEGF was increased (P<0.05). Moreover, CVF was decreased (P<0.05), and the protein expression levels of PI3K, mTOR, HIF-1α, and VEGF were significantly increased (P<0.01). ConclusionGualou Xiebai Banxiatang can improve cardiac function, reduce myocardial pathological damage, enhance endothelial cell function, promote myocardial microvascular formation, and upregulate the expression of PI3K, mTOR, HIF-1α, and VEGF proteins in myocardial tissue in rats with ischemic myocardial injury.
6.Identification of USP2 as a novel target to induce degradation of KRAS in myeloma cells.
Yingying WANG ; Youping ZHANG ; Hao LUO ; Wei WEI ; Wanting LIU ; Weiwei WANG ; Yunzhao WU ; Cheng PENG ; Yanjie JI ; Jianfang ZHANG ; Chujiao ZHU ; Wenhui BAI ; Li XIA ; Hu LEI ; Hanzhang XU ; Leimiao YIN ; Wei WENG ; Li YANG ; Ligen LIU ; Aiwu ZHOU ; Yueyue WEI ; Qi ZHU ; Weiliang ZHU ; Yongqing YANG ; Zhijian XU ; Yingli WU
Acta Pharmaceutica Sinica B 2024;14(12):5235-5248
Inducing the degradation of KRAS represents a novel strategy to combat cancers with KRAS mutation. In this study, we identify ubiquitin-specific protease 2 (USP2) as a novel deubiquitinating enzyme of KRAS in multiple myeloma (MM). Specifically, we demonstrate that gambogic acid (GA) forms a covalent bond with the cysteine 284 residue of USP2 through an allosteric pocket, inhibiting its deubiquitinating activity. Inactivation or knockdown of USP2 leads to the degradation of KRAS, resulting in the suppression of MM cell proliferation in vitro and in vivo. Conversely, overexpressing USP2 stabilizes KRAS and partially abrogates GA-induced apoptosis in MM cells. Furthermore, elevated USP2 levels may be associated with poorer prognoses in MM patients. These findings highlight the potential of the USP2/KRAS axis as a therapeutic target in MM, suggesting that strategically inducing KRAS degradation via USP2 inhibition could be a promising approach for treating cancers with KRAS mutations.
7.Advances in lysosomal escape mechanisms for gynecological cancer nano-therapeutics.
Heng WEI ; Yingying HAO ; Jin ZHANG ; Yue QI ; Chong FENG ; Chen ZHANG
Journal of Pharmaceutical Analysis 2024;14(12):101119-101119
Gynecological cancers present significant treatment challenges due to drug resistance and adverse side effects. This review explores advancements in lysosomal escape mechanisms, essential for enhancing nano-therapeutic efficacy. Strategies such as pH-sensitive linkers and membrane fusion are examined, showcasing their potential to improve therapeutic outcomes in ovarian, cervical, and uterine cancers. We delve into novel materials and strategies developed to bypass the lysosomal barrier, including pH-sensitive linkers, fusogenic lipids, and nanoparticles (NPs) engineered for endosomal disruption. Mechanisms such as the proton sponge effect, where NPs induce osmotic swelling and rupture of the lysosomal membrane, and membrane fusion, which facilitates the release of therapeutic agents directly into the cytoplasm, are explored in detail. These innovations not only promise to improve therapeutic outcomes but also minimize side effects, marking a significant step forward in the treatment of ovarian, cervical, and uterine cancers. By providing a comprehensive analysis of current advancements and their implications for clinical applications, this review sheds light on the potential of lysosomal escape strategies to revolutionize gynecological cancer treatment, setting the stage for future research and development in this vital area.
8.Effect of Gualou Xiebai Banxiatang on Mitochondrial Dysfunction and AMPK/PGC-1α Signaling Pathway in Rats with Ischemic Myocardial Injury
Yingying TAN ; Hui WANG ; Yanbing WANG ; Hong LI ; Chengcheng MA ; Qi ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(1):9-17
ObjectiveTo observe the effect of Gualou Xiebai Banxiatang on mitochondrial dysfunction and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/peroxlsome proliferator-activated receptor-γ coactlvator-1α (PGC-1α) signaling pathway in rats with ischemic myocardial injury. MethodSeventy male SD rats were used in this experiment. Six rats from them were randomly selected as the control (CON) group, and the others were given high fat diet combined with isoproterenol injection (5 mg·kg-1·d-1, 7 d) to induce the rat model of ischemic heart disease based on hyperlipidemia. Successfully modeled rats were then randomly divided into model (MOD) group, high-dose Gualou Xiebai Banxiatang (GXBD-H) group, medium-dose Gualou Xiebai Banxiatang (GXBD-M) group, low-dose Gualou Xiebai Banxiatang (GXBD-L) group, and metoprolol (MET) group. Rats in the GXBD-H, GXBD-M, and GXBD-L groups were given 11.2, 5.6, 2.8 g·kg-1·d-1 Gualou Xiebai Banxiatang, those in the MET group were given 2.6 mg·kg-1·d-1 metoprolol, and those in the CON and MOD groups were given equal volume of pure water for 28 d. Hemodynamics were measured in rats by cardiac catheterization. Transmission electron microscopy was used to analyze myocardial mitochondria. Serum brain natriuretic peptide (BNP) and cardiac troponin T (cTnT) levels were detected by enzyme-linked immunosorbent assay (ELISA). Mitochondrial membrane potential assay kit (JC-1 method) was applied for detecting mitochondrial membrane potential. The changes in the mitochondrial DNA copy number were measured by real-time quantitative polymerase chain reaction (Real-time PCR). The content of adenosine triphosphate (ATP) in myocardial tissues was determined by spectrophotometer. The expression levels of p-AMPK, AMPK, PGC-1α, nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM) in myocardium was detected by Western blot. ResultAs compared with the CON group, left ventricular end-systolic pressure (LVESP) and left ventricular end-diastole pressure (LVEDP) in the MOD group were significantly increased (P<0.05, P<0.01), and +dp/dtmax and -dp/dtmax were significantly decreased (P<0.01). In the MOD group, cardiac index and myocardial interstitial fibrosis area were significantly increased (P<0.01), accompanied by mitochondrial damage, serum BNP, cTnT, and malondialdehyde (MDA) were significantly increased (P<0.01), and serum superoxide dismutase (SOD) level was significantly decreased (P<0.01). The myocardial mitochondrial membrane potential, DNA copy number, and ATP level were significantly decreased (P<0.01), and the protein expression levels of p-AMPK/AMPK, PGC-1α, NRF1, and TFAM in myocardial tissues were significantly decreased in the MOD group (P<0.01). Compared with the MOD group, the GXBD-H and GXBD-M groups significantly improved LVESP, LVEDP, +dp/dtmax, and -dp/dtmax (P<0.05, P<0.01), significantly decreased heart index and myocardial interstitial fibrosis area (P<0.05, P<0.01), and alleviated mitochondrial damage. In the GXBD-H and GXBD-M groups, serum BNP, cTnT, and MDA were decreased significantly (P<0.05, P<0.01), serum SOD level was increased significantly (P<0.05), and myocardial mitochondrial membrane potential, DNA copy number, and ATP level were significantly increased (P<0.05, P<0.01). The protein levels of p-AMPK/AMPK, PGC-1α, NRF1, and TFAM in myocardial tissues were significantly increased in the GXBD-H and GXBD-M groups (P<0.05, P<0.01). ConclusionGualou Xiebai Banxiatang has the effects of reducing the changes in cardiac function and myocardial pathology of rats with myocardial injury, inhibiting mitochondrial dysfunction, and up-regulating the protein expression levels of p-AMPK/AMPK, PGC-1α, NRF1, and TFAM in myocardial tissues. This study provides new laboratory evidence for in-depth exploration of the mechanism of this classical compound in preventing and treating myocardial injury.
9.Efficacy and safety of Omalizumab for the treatment of pediatric allergic asthma: a retrospective multicenter real-world study in China
Li XIANG ; Baoping XU ; Huijie HUANG ; Mian WEI ; Dehui CHEN ; Yingying ZHAI ; Yingju ZHANG ; Dan LIANG ; Chunhui HE ; Wei HOU ; Yang ZHANG ; Zhimin CHEN ; Jingling LIU ; Changshan LIU ; Xueyan WANG ; Shan HUA ; Ning ZHANG ; Ming LI ; Quan ZHANG ; Leping YE ; Wei DING ; Wei ZHOU ; Ling LIU ; Ling WANG ; Yingyu QUAN ; Yanping CHEN ; Yanni MENG ; Qiusheng GE ; Qi ZHANG ; Jie CHEN ; Guilan WANG ; Dongming HUANG ; Yong YIN ; Mingyu TANG ; Kunling SHEN
Chinese Journal of Applied Clinical Pediatrics 2023;38(1):64-71
Objective:To assess the clinical effectiveness and safety of Omalizumab for treating pediatric allergic asthma in real world in China.Methods:The clinical data of children aged 6 to 11 years with allergic asthma who received Omalizumab treatment in 17 hospitals in China between July 6, 2018 and September 30, 2020 were retrospectively analyzed.Such information as the demographic characteristics, allergic history, family history, total immunoglobulin E (IgE) levels, specific IgE levels, skin prick test, exhaled nitric oxide (FeNO) levels, eosinophil (EOS) counts, and comorbidities at baseline were collected.Descriptive analysis of the Omalizumab treatment mode was made, and the difference in the first dose, injection frequency and course of treatment between the Omalizumab treatment mode and the mode recommended in the instruction was investigated.Global Evaluation of Treatment Effectiveness (GETE) analysis was made after Omalizumab treatment.The moderate-to-severe asthma exacerbation rate, inhaled corticosteroid (ICS) dose, lung functions were compared before and after Omalizumab treatment.Changes in the Childhood Asthma Control Test (C-ACT) and Pediatric Asthma Quality of Life Questionnaire (PAQLQ) results from baseline to 4, 8, 12, 16, 24, and 52 weeks after Omalizumab treatment were studied.The commodity improvement was assessed.The adverse event (AE) and serious adverse event (SAE) were analyzed for the evaluation of Omalizumab treatment safety.The difference in the annual rate of moderate-to-severe asthma exacerbation and ICS reduction was investigated by using t test.The significance level was set to 0.05.Other parameters were all subject to descriptive analysis.A total of 200 allergic asthma patients were enrolled, including 75.5% ( n=151) males and 24.5% ( n=49) females.The patients aged (8.20±1.81) years. Results:The median total IgE level of the 200 patients was 513.5 (24.4-11 600.0) IU/mL.Their median treatment time with Omalizumab was 112 (1-666) days.Their first dose of Omalizumab was 300 (150-600) mg.Of the 200 cases, 114 cases (57.0%) followed the first Omalizumab dosage recommended in the instruction.After 4-6 months of Omalizumab treatment, 88.5% of the patients enrolled ( n=117) responded to Omalizumab.After 4 weeks of treatment with Omalizumab, asthma was well-controlled, with an increased C-ACT score [from (22.70±3.70) points to (18.90±3.74) points at baseline]. Four-six months after Omalizumab administration, the annual rate of moderate-to-severe asthma exacerbation had a reduction of (2.00±5.68) per patient year( t=4.702 5, P<0.001), the median ICS daily dose was lowered [0 (0-240) μg vs. 160 (50-4 000) μg at baseline] ( P<0.001), the PAQLQ score was improved [(154.90±8.57) points vs. (122.80±27.15) points at baseline], and the forced expiratory volume in one second % predicted (FEV 1%pred) was increased [(92.80±10.50)% vs. (89.70±18.17)% at baseline]. In patients with available evaluations for comorbidities, including allergic rhinitis, atopic dermatitis or eczema, urticaria, allergic conjunctivitis and sinusitis, 92.8%-100.0% showed improved symptoms.A total of 124 AE were reported in 58 (29.0%) of the 200 patients, and the annual incidence was 0(0-15.1) per patient year.In 53 patients who suffered AE, 44 patients (83.0%) and 9 patients (17.0%) reported mild and moderate AE, respectively.No severe AE were observed in patients.The annual incidence of SAE was 0(0-1.9) per patient year.Most common drug-related AE were abdominal pain (2 patients, 1.0%) and fever (2 patients, 1.0%). No patient withdrew Omalizumab due to AE. Conclusions:Omalizumab shows good effectiveness and safety for the treatment of asthma in children.It can reduce the moderate-to-severe asthma exacerbation rate, reduce the ICS dose, improve asthma control levels, and improve lung functions and quality of life of patients.
10.Effectiveness of HPV vaccines in real-world study
Kongxin ZHU ; Qi CHEN ; Xiaowen HU ; Yue HUANG ; Yingying SU ; Ting WU
Chinese Journal of Microbiology and Immunology 2023;43(3):230-238
Human papillomavirus (HPV) is an epitheliotropic virus. High-risk HPV infections lead to precancerous lesions which may progress to cancer in the cervix, vagina and vulva, while low-risk HPV infections cause benign lesions such as genital warts and recurrent respiratory papillomas. HPV infection remains one of the major public health problems threatening human health. To date, six prophylactic preventive HPV vaccines have been licensed, and the effectiveness of HPV vaccination has gradually appeared in some countries with earlier vaccination. HPV vaccination has been proved to be effective in protecting against diseases related to HPV infection, which leads to significant reductions in the incidence of vaccine-type HPV-related infection, high cervical lesions, anogenital warts, recurrent respiratory papillomatosis and other relevant diseases. The herd protection effect of the vaccines is outstanding. Meanwhile, a bivalent HPV vaccine has been demonstrated for the cross-protection against HPV infections of non-vaccine types (HPV31/33/45) in real-world vaccination practice.

Result Analysis
Print
Save
E-mail