1.Construction of acupuncture-moxibustion diagnosis and treatment system for spasm syndrome based on the theory of three regions and sanjiao.
Yi LI ; Guirong DONG ; Chunling BAO ; Zhihua JIAO ; Hongsheng DONG ; Liang ZHOU ; Yingchao LIU
Chinese Acupuncture & Moxibustion 2025;45(12):1811-1814
Based on the theory of "three regions and sanjiao" in traditional Chinese medicine (TCM), the acupuncture-moxibustion differentiation and treatment system is explored and constructed for spasm syndrome, so as to provide a clearer guiding framework for TCM treatment of spasm syndrome. This disorder is caused essentially by the invasion of pathogenic wind, and located in brain marrow. The key regions of illness cover five zang organs and five tissues, and the core pathogenesis is associated with wind disturbance in brain marrow. In differentiation, spasm syndrome refers to overall transmission (from the upper to the lower) and local transmission (from exterior to interior). This disorder can be classified into sanjiao spasm (heart-lung spasm of the upper jiao, liver-spleen spasm of the middle jiao, and liver-kidney spasm of the lower jiao) and three-region spasm (skin-vessel spasm of the upper region, tendon-muscle spasm of the middle region, and tendon-bone spasm of the lower region). Based on "three regions and sanjiao" theory of acupuncture and moxibustion, 7 "expelling-wind" points can be selected in terms of the etiology of this disease. Baihui (GV20)-toward-Taiyang (EX-HN5) needling is applied to regulate the brain marrow, focusing on the core location of illness; and regarding the key location of illness, the combination of back-shu and front-mu points and that of jing-well and xing-spring points are adopted to regulate five zang organs. The five needling techniques (half needling, leopard-spot needling, joint needling, Hegu needling and shu needling) are used to regulate five tissues.
Humans
;
Acupuncture Therapy
;
Spasm/diagnosis*
;
Moxibustion
;
Acupuncture Points
;
Medicine, Chinese Traditional
;
Diagnosis, Differential
2.Observation on analgesic efficacy of ultrasound-guided high fascia iliac compartment block for tourniquet-related pain following total knee arthroplasty.
Qingqing YU ; Yingchao TANG ; Haiyu FU ; Li JIANG ; Benjing SONG ; Wei WANG ; Qingyun XIE ; Song CHEN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(8):1045-1050
OBJECTIVE:
To evaluate the analgesic efficacy of ultrasound-guided high fascia iliaca compartment block (HFICB) in managing tourniquet-related pain following total knee arthroplasty (TKA).
METHODS:
A prospective randomized controlled trial was conducted involving 84 patients with severe knee osteoarthritis or rheumatoid arthritis who underwent unilateral TKA between March 2024 and December 2024. Patients were randomly assigned to two groups ( n=42) using a random number table. In the trial group, ultrasound-guided HFICB was performed preoperatively, with 0.2% ropivacaine injected into the fascia iliaca compartment. No intervention was administered in the control group. Baseline characteristics, including gender, age, surgical side, body mass index, and preoperative visual analogue scale (VAS) scores at rest and during movement, showed no significant difference between the two groups ( P>0.05). In both groups, a tourniquet was applied after osteotomy and before pulsed lavage, and removed after the closure of the first layer of the joint capsule. Postoperative assessments were conducted at 6, 12, 24, and 48 hours, including VAS scores at the tourniquet site (at rest and during movement), Bromage motor block scores, Ramsay sedation scores, and Bruggrmann comfort scale (BCS) scores to evaluate patient comfort. Additionally, the average tramadol consumption and incidence of nausea and vomiting within 48 hours postoperatively were recorded and compared.
RESULTS:
In the trial group and control group, VAS scores during movement at the tourniquet site significantly improved at all postoperative time points compared to preoperative levels ( P<0.05). VAS scores at rest increased transiently at 6 hours after operation in both groups, and then gradually decreased to the preoperative level. Except that there was no significant difference at 48 hours after operation in the trial group ( P>0.05), there were significant differences at other time points of two groups compared to preoperative score ( P<0.05). Except for VAS score at rest at 6 hours, VAS score during movement at 48 hours, and BCS comfort score at 48 hours ( P>0.05), the trial group showed significantly better outcomes than the control group in terms of VAS score at rest, VAS score during movement, Ramsay sedation scores, and BCS comfort scores at all other time points ( P<0.05). No significant difference was found in Bromage motor block scores between the groups ( P>0.05). Tramadol was used in 3 patients in the trial group and 7 patients in the control group within 48 hours after operation, the dosage was (133.30±14.19) mg and (172.40±22.29) mg, showing significant difference ( P<0.05). Nausea and vomiting occurred in 4 patients (9.5%) in the trial group and 3 patients (7.1%) in the control group, with no significant difference in incidence between groups ( P>0.05).
CONCLUSION
Ultrasound-guided HFICB provides effective analgesia for tourniquet-related pain following TKA, facilitates early postoperative functional recovery of the knee joint, and may serve as a valuable clinical option for postoperative pain management in TKA patients.
Humans
;
Arthroplasty, Replacement, Knee/adverse effects*
;
Nerve Block/methods*
;
Male
;
Female
;
Pain, Postoperative/etiology*
;
Tourniquets/adverse effects*
;
Prospective Studies
;
Middle Aged
;
Ropivacaine/administration & dosage*
;
Aged
;
Ultrasonography, Interventional
;
Anesthetics, Local/administration & dosage*
;
Pain Measurement
;
Fascia
;
Osteoarthritis, Knee/surgery*
;
Treatment Outcome
;
Arthritis, Rheumatoid/surgery*
3.Analysis of current status of radiation protection in non-medical radiation workplaces in Yantai, China, 2022
Xin CHI ; Li LI ; Yingchao SUN ; Kelin WANG ; Xige YAN
Chinese Journal of Radiological Health 2024;33(1):68-73
Objective To investigate the current status of radiation protection in non-medical radiation workplaces in Yantai, China, and to provide a scientific basis for occupational health management in non-medical radiation workplaces. Methods Non-medical radiation workplaces in Yantai were investigated using a questionnaire survey in 2022, including radiation source term, occupational health examination, personal dose monitoring, personal protective equipment, and radiation protection testing workplaces. Data were entered by a double-entry method and then analyzed. Results There were 56 non-medical radiation workplaces in Yantai, covering manufacturing, nonferrous metal ore mining, nuclear power plant, transportation, and technical services. There were 0 Class I radiation device, 150 Class II radiation devices, and 10 Class III radiation devices; there were 80 Class I radiation sources, 16 Class II radiation sources, 14 Class III radiation sources, 62 Class IV radiation sources, and 135 Class V radiation sources. There were 998 radiation workers, with an occupational health examination rate and personal dose monitoring rate of 98.3%. Among the 56 non-medical radiation workplaces, 47 (83.9%) were equipped with radiation protection monitoring instruments, 24 (51.1%) workplaces had verified the radiation protection monitoring instruments, with 2017 personal dose monitoring instruments and 2327 personal protective equipment in place, 42 (75%) workplaces carried out occupational health assessments, 44 (78.6%) workplaces carried out self-detection, and 53 (94.6%) workplaces carried out entrusting detections (monitoring pass rate: 100% [53/53]). The declaration rate of occupational hazard items was 87.5% (49/56). Conclusion There is still a gap between the current status and the requirements in the national regulations and standards regarding radiation protection in non-medical radiation workplaces. Therefore, the supervision and management of non-medical radiation workplaces should be further strengthened, especially the configuration and verification of radiation protection monitoring instruments.
4.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
5.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
6.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
7.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
8.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
9.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.
10.Network pharmacology analysis and experimental validation of Anemarrhenae Rhizoma in treating Alzheimer's disease
Deyu LI ; Yingchao HU ; Xin LIU ; Guran YU
Journal of Zhejiang University. Medical sciences 2024;53(1):84-97
Objective:To explore the mechanism of Anemarrhenae Rhizoma in treatment of Alzheimer's Disease(AD).Methods:The active ingredients and targets of Anemarrhenae Rhizoma for treatment of AD were screened with network pharmacology methods,the protein-protein interaction(PPI)network was constructed and the core targets were analyzed.Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways enriching analysis was performed.The peripheral blood lymphocytes were extracted and lymphoblastoid cell lines(LCL)were constructed and an in vitro cell model of LCL-SKNMC was established.MTT and CCK-8 methods were used to quantify SKNMC/LCL cells,2′,7′-dichlorodihydrofluorescein diacetate(DCFH-DA)probe was used to detect reactive oxygen species(ROS),and immunofluorescence staining was used to detect the generation of Aβ1-42 in a co-cultured model.Western blotting was used to detect protein expression in the co-culture model.The lifespan of N2 nematodes was observed under oxidative stress,normal state,and heat stress;ROS generated by N2 nematodes was detected by DCFH-DA probes.The paralysis time of CL4176 N2 nematodes was evaluated by paralysis assay,and Aβ deposition in the pharynx was detected by Thioflavin S staining.Results:Through network pharmacology,15 potential active ingredients and 103 drug-disease targets were identified.PPI analysis showed that the Anemarrhenae Rhizoma might play anti-AD roles through albumin,Akt1,tumor necrosis factor,epidermal growth factor receptor(EGFR),vascular endothelial growth factor A(VEGFA),mammalian target of rapamycin(mTOR),amyloid precursor protein(APP)and other related targets.KEGG analysis showed that the pharmacological effects of Anemarrhenae Rhizoma might involve the biological processes of Alzheimer's disease,endocrine resistance,insulin resistance;and neuroactive ligand-receptor interaction,phosphatidylinositol 3-kinase(PI3K)-Akt signaling pathway,calcium signaling pathway,AGE-RAGE signaling pathway in diabetes complications,neurotrophic factor signaling pathway and others.The in vitro cell experiments showed that Anemarrhenae Rhizoma was able to reduce the production of ROS and Aβ1-42(both P<0.01),inhibit the expression of β-secretase 1(BACE1),APP and Aβ1-42 proteins(all P<0.05),up-regulate the expression of p-PI3K/PI3K,p-AKT/AKT,p-GSK3β/GSK3β in SKNMC cells(all P<0.05).The in vivo studies further confirmed that Anemarrhenae Rhizoma prolonged the lifespan of C.elegans under stress and normal conditions,reduced the accumulation of ROS and the toxicity of Aβ deposition.Conclusion:Anemarrhenae Rhizoma may reduce the production of Aβ in AD and inhibit its induced oxidative stress,which may be achieved by regulating the PI3K/Akt/GSK-3β pathway.

Result Analysis
Print
Save
E-mail