1.Influencing factors of positive surgical margins after radical resection of prostate cancer.
Chang-Jie SHI ; Zhi-Jian REN ; Ying ZHANG ; Ding WU ; Bo FANG ; Xiu-Quan SHI ; Wen CHENG ; Dian FU ; Xiao-Feng XU
National Journal of Andrology 2025;31(4):328-332
OBJECTIVE:
To investigate the influencing factors of pathological positive surgical margins (PSM) after radical resection of prostate cancer.
METHODS:
The clinical data of 407 patients who underwent radical resection of prostate cancer in our hospital from 2011 to 2020 were retrospectively analyzed. And the patients were divided into two groups according to postoperative pathological results. Single factor analysis was used to evaluate the differences in postoperative Gleason score, preoperative total prostate-specific antigen (tPSA), preoperative serum free prostate-specific antigen to preoperative tPSA ratio (fPSA/ tPSA), clinical stage, postoperative pathological stage, operation method, age, body mass index (BMI), diameter and volume of prostate tumor. Multivariate logistic regression was used to determine the independent risk factor of PSM.
RESULTS:
Among 407 patients with prostate cancer, 179 cases (43.98%) were positive. Univariate analysis showed that there were significant differences in postoperative Gleason score, preoperative tPSA, clinical stage and postoperative pathological stage between the two groups (P<0.05). And Gleason score, preoperative tPSA and pathologic stage were independent risk factors for PSM.
CONCLUSION
There are relationships between PSM and postoperative Gleason score, tPSA, clinical T stage, postoperative pathologic pT stage. Among them, postoperative Gleason score (Gleason=7 points, Gleason≥8 points), preoperative total prostate-specific antigen (tPSA > 20 μg/L), and postoperative pathologic pT stage (pT3a, pT3b) were independent risk factors for positive pathological margins of prostate cancer.
Margins of Excision
;
Prostatic Neoplasms/surgery*
;
Prostatectomy/statistics & numerical data*
;
Prostate/surgery*
;
Retrospective Studies
;
Neoplasm Grading/statistics & numerical data*
;
Prostate-Specific Antigen/blood*
;
Neoplasm Staging/statistics & numerical data*
;
Postoperative Period
;
Risk Factors
;
Humans
;
Male
2.Effect of RhoC silencing on migration and invasion of oral squamous cell carcinoma
Jie YANG ; Huan LI ; Xin WANG ; Zhenggang CHEN ; Ying WANG ; Quan LI ; Yingjie HUA ; Jing WANG ; Zengpeng CHI
Chinese Journal of Pathophysiology 2024;40(1):47-57
AIM:To explore the expression of RhoC in oral squamous cell carcinoma(OSCC)and its effects on the malignant biological behavior of OSCC cells.METHODS:The UALCAN and K-M plotter databases,alongside tis-sue sample analyses,facilitated understanding RhoC expression in cancer and its links to clinicopathological traits.Two small interfering RNAs(RhoC-siRNA)were constructed according to the RhoC gene sequence.The mRNA and protein ex-pression levels of RhoC in OSCC cells were determined.The protein levels of FAK,p-FAK,MAPK,p-MAPK,matrix me-talloproteinase-2(MMP-2)and MMP-9 were also examined by Western blot.Furthermore,the invasion and migration of OSCC cells were analyzed by Transwell assay and scratch test.Finally,the pulmonary metastasis model of nude mice was established.RESULTS:The results of the databases showed that RhoC was highly expressed in OSCC tissues,which was closely related to pathological stage,pathological grade and lymph node metastasis,but not significantly related to the sur-vival rate of patients.Furthermore,compared with paracancer tissues,the mRNA and protein expression levels of RhoC were increased in OSCC tissues(P<0.01).Silencing of RhoC prominently reduced the migration and invasion of OSCC cells as well as the protein levels of p-FAK,p-MAPK,MMP2 and MMP9(P<0.05).The protein levels of MAPK and FAK were unchanged(P>0.05).The fluorescence intensity of the experimental group was significantly lower than that of the control group,and the results of HE staining showed that the number of lung nodules in the experimental group was sig-nificantly reduced(P<0.05).CONCLUSION:RhoC can effectively influence the migration and invasion of OSCC cells,and its potential mechanism may be related to FAK/MAPK/MMPs signaling pathway.
3.Cloning and interacted protein identification of AP1 homologous gene from Lonicera macranthoides
Ya-xin YU ; Li-jun LONG ; Chang-zhu LI ; Hui-jie ZENG ; Zhong-quan QIAO ; Si-si LIU ; Ying-zi MA
Acta Pharmaceutica Sinica 2024;59(10):2880-2888
The
4.Cloning and interacted protein identification of AGL12 gene from Lonicera macranthoides
Li-jun LONG ; Hui-jie ZENG ; Zhong-quan QIAO ; Xiao-ming WANG ; Chang-zhu LI ; Si-si LIU ; Ying-zi MA
Acta Pharmaceutica Sinica 2024;59(5):1458-1466
MADS-box protein family are important transcriptional regulatory factors in plant growth and development. The
5.Impact of therapeutic plasma exchange intervention timing and liver injury periodization on the prognosis of pa-tients with exertional heat stroke
Zongzhong HE ; Min WANG ; Yuan ZHUANG ; Jie LIN ; Leiying ZHANG ; Liyang ZOU ; Lingling LI ; Chunya MA ; Xiaomin LIU ; Xiang QUAN ; Ying JIANG ; Mou ZHOU ; Hongjun KANG ; Yang YU
Chinese Journal of Blood Transfusion 2024;37(7):728-733
Objective To explore the prognostic impact and clinical application value of therapeutic plasma exchange(TPE)intervention timing and liver injury periodization in patients with exertional heat stroke(EHS).Methods Data of 127 EHS patients from the First Medical Center of the General Hospital of the People′s Liberation Army from January 2011 to December 2023 were collected,then divided into the death group and the survival group based on therapeutic outcomes and into 5 stages according to the dynamic changes of ALT,AST,TBIL and DBIL.According to propensity score matching analysis,11 patients in the survival group and 12 patients in the death group were included in the statistical analysis,and 20 of them were treated with TPE.The changes in indicators and clinical outcomes before and after TPE were observed,in order to evaluate the impact of intervention timing on prognosis.Results Among the 23 patients,14 had no liver injury or could progress to the repair phase,resulting in 3 deaths(with the mortality rate of 21.43%),while 9 patients failed to pro-gress to the repair phase,resulting in 9 deaths(with the mortality rate of 100%),with significant differences(P<0.05).The mortality rate of the first TPE intervention before the third stage of liver injury was 23.08%(3/13),while that of interven-tion after reaching or exceeding the third stage was 85.71%(6/7),and the difference was statistically significant(P<0.05).Conclusion TPE should be executed actively in EHS patients combined with liver injury before the third phase to lock its pathological and physiological processes,thereby improving prognosis and reducing mortality.
6.Risk factors of allergic reactions caused by therapeutic plasma exchange:a single-center analysis
Lingling LI ; Xiaojun ZHU ; Jie LIN ; Yuan ZHUANG ; Xuede QIU ; Xiang QUAN ; Zongzhong HE ; Ying JIANG ; Yang YU
Chinese Journal of Blood Transfusion 2024;37(7):748-753
Objective To review the occurrence of allergic reactions during therapeutic plasma exchange(TPE)and to explore the risk factors of TPE allergic reactions.Methods The clinical data of 929 patients treated with TPE using plasma components by the Department of Transfusion Medicine in our medical center from 2018 to 2023 were collected.The influen-cing factors of allergic reactions were analyzed by univariate analysis,and the independent risk factors of allergic reactions were analyzed by logistic multivariate regression analysis.Results A total of 4 071 TPEs were performed in 929 patients.A-mong them,198 patients(21.31%)experienced 349 times(8.57%)of allergic reactions,with the incidence of gradeⅠ,Ⅱ and Ⅲ allergic reactions of 16.33%,81.38%and 2.29%,respectively,and no deaths.The univariate analysis showed that the patient′s age,allergy history,diagnosis of immune-related diseases,ICU admission,plasma consumption,total blood volume,maximum blood flow rate and combined use of albumin were related to the occurrence of allergic reactions(P<0.05).Multivariate regression analysis showed that young patients,a history of allergy,immune-related diseases and non-ICU patients were prone to allergic reactions in TPE,but the treatment options of TPE such as substitute fluid category,plasma consumption and blood flow rate were not related to the occurrence of allergic reactions.Conclusion There are sig-nificant individual differences in the occurrence of allergic reactions for TPE,and young age,history of allergies,immune-related diseases and non-ICU patients are risk factors for allergic reactions in TPE.Identifying patients with risk factors be-fore TPE treatment and giving corresponding preventive measures can reduce the incidence of allergic reactions.
7.Research status of chemical constituents,pharmacological effects and predictive analysis of quality markers of Hedyotis diffusa
Ying-Jie WANG ; Hui-Quan HU ; Qian WU ; Jia-Mei ZOU ; Yu-Hui PING
The Chinese Journal of Clinical Pharmacology 2024;40(15):2296-2300
Hedyotis diffusa has unique therapeutic effects on snake and insect bites,edema,cancer and other diseases,and is widely used clinically.However,the《Chinese Pharmacopoeia》has no record of the name of the plant,and there is no fundamental basis for its elaboration of the relationship between"composition-potency-quality marker(Q-Marker)".This article reviews the chemical constituents and pharmacological effects of Hedyotis diffusa,and combined with the concept of Q-Marker.Q-Marker predictions were made in terms of traditional efficacy,traditional medicinal properties and the measurability of chemical components,in order to provide a reference for the clinical applications,quality evaluation further studies of Hedyotis diffusa in the future.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9. Brain removal through a posterior incision on the scalp of both ears
Jian-Wei WANG ; Huai-Cun LIU ; Quan-Cheng CHENG ; Hui-Ru DING ; Yan-Rong SUN ; Pei-Liang GU ; Ying-Jie LUAN ; Wei-Guang ZHANG ; Jun-Wei ZHANG
Acta Anatomica Sinica 2023;54(1):123-126
Objective The traditional round incision or cross incision brain harvesting method can not meet the requirements of protecting the donor's remains. In this study, the method of brain removal through a posterior incision on the scalp of both ears was proposed, which effectively protected the donor's remains. Methods Adopting the incision 2. 0 cm above the external occipital protuberance to the most front edge of the auricle to obtain a complete brain. Results The incision did not involve the head and face skin, which was small and conducive to suture repair and reduce exudation. Conclusion The incision effectively protects the donor' s remains, and it will be conducive to the establishment and development of the brain bank.
10.Diagnostic value of a combined serology-based model for minimal hepatic encephalopathy in patients with compensated cirrhosis
Shanghao LIU ; Hongmei ZU ; Yan HUANG ; Xiaoqing GUO ; Huiling XIANG ; Tong DANG ; Xiaoyan LI ; Zhaolan YAN ; Yajing LI ; Fei LIU ; Jia SUN ; Ruixin SONG ; Junqing YAN ; Qing YE ; Jing WANG ; Xianmei MENG ; Haiying WANG ; Zhenyu JIANG ; Lei HUANG ; Fanping MENG ; Guo ZHANG ; Wenjuan WANG ; Shaoqi YANG ; Shengjuan HU ; Jigang RUAN ; Chuang LEI ; Qinghai WANG ; Hongling TIAN ; Qi ZHENG ; Yiling LI ; Ningning WANG ; Huipeng CUI ; Yanmeng WANG ; Zhangshu QU ; Min YUAN ; Yijun LIU ; Ying CHEN ; Yuxiang XIA ; Yayuan LIU ; Ying LIU ; Suxuan QU ; Hong TAO ; Ruichun SHI ; Xiaoting YANG ; Dan JIN ; Dan SU ; Yongfeng YANG ; Wei YE ; Na LIU ; Rongyu TANG ; Quan ZHANG ; Qin LIU ; Gaoliang ZOU ; Ziyue LI ; Caiyan ZHAO ; Qian ZHAO ; Qingge ZHANG ; Huafang GAO ; Tao MENG ; Jie LI ; Weihua WU ; Jian WANG ; Chuanlong YANG ; Hui LYU ; Chuan LIU ; Fusheng WANG ; Junliang FU ; Xiaolong QI
Chinese Journal of Laboratory Medicine 2023;46(1):52-61
Objective:To investigate the diagnostic accuracy of serological indicators and evaluate the diagnostic value of a new established combined serological model on identifying the minimal hepatic encephalopathy (MHE) in patients with compensated cirrhosis.Methods:This prospective multicenter study enrolled 263 compensated cirrhotic patients from 23 hospitals in 15 provinces, autonomous regions and municipalities of China between October 2021 and August 2022. Clinical data and laboratory test results were collected, and the model for end-stage liver disease (MELD) score was calculated. Ammonia level was corrected to the upper limit of normal (AMM-ULN) by the baseline blood ammonia measurements/upper limit of the normal reference value. MHE was diagnosed by combined abnormal number connection test-A and abnormal digit symbol test as suggested by Guidelines on the management of hepatic encephalopathy in cirrhosis. The patients were randomly divided (7∶3) into training set ( n=185) and validation set ( n=78) based on caret package of R language. Logistic regression was used to establish a combined model of MHE diagnosis. The diagnostic performance was evaluated by the area under the curve (AUC) of receiver operating characteristic curve, Hosmer-Lemeshow test and calibration curve. The internal verification was carried out by the Bootstrap method ( n=200). AUC comparisons were achieved using the Delong test. Results:In the training set, prevalence of MHE was 37.8% (70/185). There were statistically significant differences in AMM-ULN, albumin, platelet, alkaline phosphatase, international normalized ratio, MELD score and education between non-MHE group and MHE group (all P<0.05). Multivariate Logistic regression analysis showed that AMM-ULN [odds ratio ( OR)=1.78, 95% confidence interval ( CI) 1.05-3.14, P=0.038] and MELD score ( OR=1.11, 95% CI 1.04-1.20, P=0.002) were independent risk factors for MHE, and the AUC for predicting MHE were 0.663, 0.625, respectively. Compared with the use of blood AMM-ULN and MELD score alone, the AUC of the combined model of AMM-ULN, MELD score and education exhibited better predictive performance in determining the presence of MHE was 0.755, the specificity and sensitivity was 85.2% and 55.7%, respectively. Hosmer-Lemeshow test and calibration curve showed that the model had good calibration ( P=0.733). The AUC for internal validation of the combined model for diagnosing MHE was 0.752. In the validation set, the AUC of the combined model for diagnosing MHE was 0.794, and Hosmer-Lemeshow test showed good calibration ( P=0.841). Conclusion:Use of the combined model including AMM-ULN, MELD score and education could improve the predictive efficiency of MHE among patients with compensated cirrhosis.

Result Analysis
Print
Save
E-mail