1.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
2.Effect and mechanism of Bufei Decoction on improving Klebsiella pneumoniae pneumonia in rats by regulating IL-17 signaling pathway.
Li-Na HUANG ; Zheng-Ying QIU ; Xiang-Yi PAN ; Chen LIU ; Si-Fan LI ; Shao-Guang GE ; Xiong-Wei SHI ; Hao CAO ; Rui-Hua XIN ; Fang-di HU
China Journal of Chinese Materia Medica 2025;50(11):3097-3107
Based on the interleukin-17(IL-17) signaling pathway, this study explores the effect and mechanism of Bufei Decoction on Klebsiella pneumoniae pneumonia in rats. SD rats were randomly divided into the control group, model group, Bufei Decoction low-dose group(6.68 g·kg~(-1)·d~(-1)), Bufei Decoction high-dose group(13.36 g·kg~(-1)·d~(-1)), and dexamethasone group(1.04 mg·kg~(-1)·d~(-1)), with 10 rats in each group. A pneumonia model was established by tracheal drip injection of K. pneumoniae. After successful model establishment, the improvement in lung tissue damage was observed following drug administration. Core targets and signaling pathways were screened using transcriptomics techniques. Real-time fluorescence quantitative polymerase chain reaction was used to detect the mRNA expression of core targets interleukin-6(IL-6), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and chemokine CXC ligand 6(CXCL6). Western blot was used to assess key proteins in the IL-17 signaling pathway, including interleukin-17A(IL-17A), nuclear transcription factor-κB activator 1(Act1), tumor necrosis factor receptor-associated factor 6(TRAF6), and downstream phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK), and phosphorylated nuclear factor-κB p65(p-NF-κB p65). Apoptosis of lung tissue cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling(TUNEL). The results showed that, compared with the control group, the model group exhibited significant pathological damage in lung tissue. The mRNA expression of IL-6, IL-1β, TNF-α, and CXCL6, as well as the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly increased, and the number of apoptotic cells was notably higher, indicating successful model establishment. Compared with the model group, both low-and high-dose groups of Bufei Decoction showed reduced pathological damage in lung tissue. The mRNA expression levels of IL-6, IL-1β, TNF-α, and CXCL6, and the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly decreased, with a significant reduction in apoptotic cells in the high-dose group. In conclusion, Bufei Decoction can effectively improve lung tissue damage and reduce inflammation in rats with K. pneumoniae. The mechanism may involve the regulation of the IL-17 signaling pathway and the reduction of apoptosis.
Animals
;
Interleukin-17/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Klebsiella pneumoniae/physiology*
;
Klebsiella Infections/immunology*
;
Humans
;
Lung/drug effects*
3.Comparison on chemical components of Angelicae Sinensis Radix before and after wine processing by HS-GC-IMS, HS-SPME-GC-MS, and UPLC-Q-Orbitrap-MS combined with chemometrics.
Xue-Hao SUN ; Jia-Xuan CHEN ; Jia-Xin YIN ; Xiao HAN ; Zhi-Ying DOU ; Zheng LI ; Li-Ping KANG ; He-Shui YU
China Journal of Chinese Materia Medica 2025;50(14):3909-3917
The study investigated the intrinsic changes in material basis of Angelicae Sinensis Radix during wine processing by headspace-gas chromatography-ion mobility spectrometry(HS-GC-IMS), headspace-solid phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS), and ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry(UPLC-Q-Orbitrap-MS) combined with chemometrics. HS-GC-IMS fingerprints of Angelicae Sinensis Radix before and after wine processing were established to analyze the variation trends of volatile components and characterize volatile small-molecule substances before and after processing. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed for differentiation and difference analysis. A total of 89 volatile components in Angelicae Sinensis Radix were identified by HS-GC-IMS, including 14 unsaturated hydrocarbons, 16 aldehydes, 13 ketones, 9 alcohols, 16 esters, 6 organic acids, and 15 other compounds. HS-SPME-GC-MS detected 118 volatile components, comprising 42 unsaturated hydrocarbons, 11 aromatic compounds, 30 alcohols, 8 alkanes, 6 organic acids, 4 ketones, 7 aldehydes, 5 esters, and 5 other volatile compounds. UPLC-Q-Orbitrap-MS identified 76 non-volatile compounds. PCA revealed distinct clusters of raw and wine-processed Angelicae Sinensis Radix samples across the three detection methods. Both PCA and OPLS-DA effectively discriminated between the two groups, and 145 compounds(VIP>1) were identified as critical markers for evaluating processing quality, including 4-methyl-3-penten-2-one, ethyl 2-methylpentanoate, and 2,4-dimethyl-1,3-dioxolane detected by HS-GC-IMS, angelic acid, β-pinene, and germacrene B detected by HS-SPME-GC-MS, and L-tryptophan, licoricone, and angenomalin detected by UPLC-Q-Orbitrap-MS. In conclusion, the integration of the three detection methods with chemometrics elucidates the differences in the chemical material basis between raw and wine-processed Angelicae Sinensis Radix, providing a scientific foundation for understanding the processing mechanisms and clinical applications of wine-processed Angelicae Sinensis Radix.
Wine/analysis*
;
Gas Chromatography-Mass Spectrometry/methods*
;
Chromatography, High Pressure Liquid/methods*
;
Angelica sinensis/chemistry*
;
Solid Phase Microextraction/methods*
;
Drugs, Chinese Herbal/isolation & purification*
;
Chemometrics
;
Volatile Organic Compounds/chemistry*
;
Principal Component Analysis
;
Ion Mobility Spectrometry/methods*
4.The role of 8-OxoG and its repair systems in liver diseases progression: responsible mechanisms and promising natural products.
Ying ZHENG ; Junxin CHEN ; Ze LIU ; Kaibo WANG ; Hao ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):815-823
The accumulation of deoxyribonucleic acid (DNA) oxidative damage mediated by reactive oxygen species (ROS) is closely associated with liver diseases. 8-Oxoguanine (8-OxoG), a prevalent DNA oxidation product, plays a significant role in liver disease progression. The base excision repair (BER) pathway, comprising over 30 proteins including 8-OxoG DNA glycosylase1 (OGG1), MutY homolog (MUTYH), and MutT homolog protein 1 (MTH1), is responsible for the clearance and mismatch repair of 8-OxoG. Abnormally high levels of 8-OxoG and dysregulated expression and function of 8-OxoG repair enzymes contribute to the onset and development of liver diseases. Consequently, targeting the 8-OxoG production and repair system with agonists or inhibitors may offer a promising approach to liver disease treatment. This review summarizes the impact of 8-OxoG accumulation and dysregulated repair enzymes on various liver diseases, including viral liver disease, alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), cholestatic liver disease (CLD), liver fibrosis, cirrhosis, and liver cancer. Additionally, we review natural constituents as potential therapeutic agents that regulate 8-OxoG production, repair enzymes, and repair system-related signal pathways in oxidative damage-induced liver diseases.
Humans
;
Liver Diseases/genetics*
;
Biological Products/pharmacology*
;
DNA Repair/drug effects*
;
Guanine/metabolism*
;
Animals
;
Disease Progression
;
DNA Damage
;
Oxidative Stress
5.Sirtuin 3 Attenuates Acute Lung Injury by Decreasing Ferroptosis and Inflammation through Inhibiting Aerobic Glycolysis.
Ke Wei QIN ; Qing Qing JI ; Wei Jun LUO ; Wen Qian LI ; Bing Bing HAO ; Hai Yan ZHENG ; Chao Feng HAN ; Jian LOU ; Li Ming ZHAO ; Xing Ying HE
Biomedical and Environmental Sciences 2025;38(9):1161-1167
6.Pachymaran regulates pyroptosis of liver cancer cells via SQLE/NLRP3/GSDMD signaling pathway
Ying YANG ; Yuan CAO ; Jiao ZHAO ; Zheng LI ; Qun WANG ; Hao GAO ; Xiaofei SUN ; Mingdian YUAN ; Nan SONG
Chinese Journal of Pathophysiology 2024;40(3):444-455
AIM:Using bioinformatics analysis and experiment validation to explore the differential expres-sion genes related to abnormal lipid metabolism in hepatocellular carcinoma(HCC)and the molecular mechanism of pachymaran affecting pyroptosis through squalene epoxidase(SQLE)/nucleotide-binding oligomerization domain-like re-ceptor protein 3(NLRP3)/gasdermin D(GSDMD)signaling pathway.METHODS:(1)The GEO,GSEA,DAVID,STRING and GEPIA databases were employed to screen abnormal lipid metabolism-related differentially expressed genes in HCC.(2)The tumor tissues from HCC patients(n=9)were collected to verify the differential expression of SQLE.(3)The inhibitory effect of pachymaran on the viability of human HCC cell line HepG2 was measured by CCK-8 assay.(4)The HepG2 cells were divided into control group and pachymaran(800 mg/L)group.The cell migration was analyzed by wound-healing assay,and RT-qPCR was used to measure SQLE mRNA expression.(5)The HepG2 cells with overexpres-sion of SQLE(OE-SQLE)were divided into 5 groups as follows:control group,overexpression negative control(OE-NC)group,OE-SQLE group,OE-NC+pachymaran group,and OE-SQLE+pachymaran group.The mRNA and protein expres-sion levels of SQLE and pyroptosis-related factors were determined by RT-qPCR and Western blot.Colorimetric method and ELISA were used to measure lactate dehydrogenase(LDH),interleukin-1β(IL-1β)and IL-18 levels.The necrosis of HepG2 cells was analyzed by flow cytometry.RESULTS:The SQLE gene was screened through bioinformatics analysis,and its mRNA expression was significantly increased in tumor tissues from HCC patients(P<0.01).In cell experiments,treatment with 800 mg/L pachymaran for 48 h had a significant inhibitory effect on HepG2 cell viability,and the expres-sion of SQLE mRNA was reduced(P<0.01).After overexpression of SQLE,the mRNA and protein levels of pyroptosis-re-lated factors,necrotic rate,and LDH,IL-1β and IL-18 levels were significantly decreased(P<0.05).After treatment with pachymaran,the above indicators were significantly increased(P<0.05).CONCLUSION:The SQLE is abnormal-ly highly expressed in HCC,and pachymaran can affect the growth of HCC cells by activating the NLRP3/GSDMD pyropto-sis pathway through SQLE.
7.Study on Ecological Suitability of Scutellaria baicalensis Georgi in China Based on MaxEnt Model
Xiaoqiong XU ; Yanyun LU ; Ying ZHU ; Hao ZHU ; Qiangxia ZHENG ; Ling JIN
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(2):1-5
Objective To understand the distribution of ecological suitability of Scutellaria baicalensis Georgi;To screen the main ecological factors affecting its distribution;To predict its suitable planting area in China.Methods A total of 231 batches of Scutellaria baicalensis Georgi were collected through the fourth national survey of TCM resources.The environment information of sampling points were recorded,and 55 ecological factors were analyzed by MaxEnt model and GIS.Results Rainfall,vegetation type and soil types had a greater influence on the distribution of Scutellaria baicalensis Georgi.The ecological suitable areas of Scutellaria baicalensis Georgi mainly concentrated in the eastern part of Shaanxi Province,the western part of Hebei Province and most areas of Chengde,the most part of Shanxi Province,the western part of Beijing,the western part of Liaoning Province,the central and eastern part of Shandong Province,the junction of Jiangsu and Anhui Province,the northern part of Yunnan Province,and the eastern and southern part of Sichuan Province.Conclusion The ecological suitability areas of Scutellaria baicalensis Georgi were classified in this study,and the results could provide reference for the selection of cultivation areas of Scutellaria baicalensis Georgi.
8.Brain Targeted Strategies of Oligonucleotide Drug for Aging-associated Diseases Therapy
Hao-Ying YANG ; Run-Han LIU ; Meng-Ke FANG ; Yang LIU ; Meng ZHENG
Progress in Biochemistry and Biophysics 2024;51(2):253-268
Oligonucleotide drugs have experienced accelerated development in the past 10 years, and some of them have been used in clinical treatment. Because of its convenient design, flexible sequence, and high specificity, it is expected to solve the “undruggable” challenge of many targets which are difficult in drug development. Moreover, its clinical transformation period and cost are relatively low, which makes oligonucleotide drug become the frontier of emerging biotechnology drug discovery. Brain diseases include a series of incurable diseases, such as neurodegenerative diseases, glioma, and motor neuron diseases. Many of them are age-related and regarded as aging-associated brain diseases. Due to the complex etiology, many targets are difficult to be drugged. At the same time, the existence of the barrier system “blood-brain barrier” in the brain makes most drugs unable to achieve effective accumulation at brain lesions, and many small molecule drugs have failed in clinical transformation. The specificity and sequence flexibility of oligonucleotide acid drugs provide new possibilities for drug development, but they also face the challenge of brain delivery. Although a variety of oligonucleotide drugs have been used in the medical market, brain-targeted oligonucleotide drugs are still extremely rare. This article reviewed recent advances and discussed key topics and clinical transformation challenges in this field, such as clinical approval cases, bottlenecks of brain-targeted delivery and current strategies, as well as potential targets for aging-related brain diseases.
9.Screening and characterization of anti-SARS-CoV-2 receptor binding domain antibodies with broad-spectrum neutralizing activity
NI Wanqi ; REN Li ; JIN Changzhong ; YANG Furong ; SHEN Yumin ; WANG Shuo ; HU Caiqin ; HAO Yanling ; LIU Ying ; ZHU Biao ; SHAO Yiming ; LI Dan ; WANG Zheng
China Tropical Medicine 2024;24(3):258-
convalescents, and to screen for broad-spectrum neutralizing antibodies against the SARS-CoV-2 RBD. Methods Using biotinylated RBD as a molecular probe, flow cytometry was employed to perform single-cell sorting of B cells from peripheral blood mononuclear cells (PBMCs) of convalescents. The obtained B cells were lysed and subjected to reverse transcription, followed by nested PCR amplification of the heavy and light chains of antibodies was conducted using random primers. The amplified products were cloned into corresponding expression vectors, and the respective matched heavy-light chain plasmids were co-transfected into 293F cells for expression. Monoclonal antibodies were then purified using Protein A column chromatography. Neutralization experiments were conducted with the wild-type (WT) pseudovirus, and antibodies with IC50<0.1 μg/mL were selected for further testing of neutralizing breadth and potency against the wild-type (WT), Beta variant (B.1.351), Delta variant (B.1.617.2), and currently prevalent pseudovirus strains (XBB, BA.5, BF.7). Results A total of 21 RBD-specific monoclonal B cells were obtained from two recovered patients, resulting in the isolation of 13 pairs of antibody light/heavy chains. Nine antibodies were successfully expressed, with P1-A1, P1-B6, and P1-B9 exhibiting IC50 values below 0.1 μg/mL against the pseudovirus of the wild-type strain (WT). Specifically, P1-B6 effectively neutralized the wild-type strain (WT), Beta variant (B.1.351), and Delta variant (B.1.617.2), with IC50 values reaching 0.01 μg/mL. P1-B9 demonstrated effective neutralization against the wild-type strain (WT), Beta variant (B.1.351), Delta variant (B.1.617.2), and Gamma variant (P.1) pseudoviruses, with IC50 values of 0.42 μg/mL, 0.63 μg/mL, 0.28 μg/mL, and 2.50 μg/mL, respectively. Additionally, P1-B6 exhibited good neutralization against BA.5 and BF.7 pseudoviruses, with IC50 values of 0.06 μg/mL and 0.09 μg/mL, respectively. Conclusions Infection with the SARS-CoV-2 WT strain can induce the generation of neutralizing antibodies with broad-spectrum activity. Generating these broadly neutralizing antibodies does not require an excessively high somatic hypermutation. The obtained antibodies can be used as candidates for SARS-CoV-2 diagnosis and prevention.
10.Disease spectrum and pathogenic genes of inherited metabolic disorder in Gansu Province of China
Chuan ZHANG ; Ling HUI ; Bing-Bo ZHOU ; Lei ZHENG ; Yu-Pei WANG ; Sheng-Ju HAO ; Zhen-Qiang DA ; Ying MA ; Jin-Xian GUO ; Zong-Fu CAO ; Xu MA
Chinese Journal of Contemporary Pediatrics 2024;26(1):67-71
Objective To investigate the disease spectrum and pathogenic genes of inherited metabolic disorder(IMD)among neonates in Gansu Province of China.Methods A retrospective analysis was conducted on the tandem mass spectrometry data of 286 682 neonates who received IMD screening in Gansu Provincial Maternal and Child Health Hospital from January 2018 to December 2021.A genetic analysis was conducted on the neonates with positive results in tandem mass spectrometry during primary screening and reexamination.Results A total of 23 types of IMD caused by 28 pathogenic genes were found in the 286 682 neonates,and the overall prevalence rate of IMD was 0.63‰(1/1 593),among which phenylketonuria showed the highest prevalence rate of 0.32‰(1/3 083),followed by methylmalonic acidemia(0.11‰,1/8 959)and tetrahydrobiopterin deficiency(0.06‰,1/15 927).In this study,166 variants were identified in the 28 pathogenic genes,with 13 novel variants found in 9 genes.According to American College of Medical Genetics and Genomics guidelines,5 novel variants were classified as pathogenic variants,7 were classified as likely pathogenic variants,and 1 was classified as the variant of uncertain significance.Conclusions This study enriches the database of pathogenic gene variants for IMD and provides basic data for establishing an accurate screening and diagnosis system for IMD in this region.

Result Analysis
Print
Save
E-mail