1.Visualization Analysis of Research Hotspots and Trends in Field of Tumor Therapy Based on CiteSpace and VOSviewer
Yuhang FANG ; Chuchu ZHANG ; Bailu SUI ; Yan WANG ; Runxi WANG ; Yu CHEN ; Xinhe YUAN ; Hongjun YANG ; Ying ZHANG
Cancer Research on Prevention and Treatment 2025;52(4):297-304
Objective To explore the research hotspots and development trends in the field of cancer treatment in the past decade. Methods The CNKI and Web of Science Core Collection databases were searched for Chinese and English articles related to cancer treatment published over the last 10 years. Bibliometric research methods were employed, including keyword cluster analysis of published literature. Results A total of 45 455 Chinese articles and 866 958 English articles were retrieved. Combining the visualization analysis results and the current research dilemma of tumor treatment revealed that the current research hotspots of tumor treatment domestically and internationally can primarily focus on four key areas. In the realm of targeted therapy, efforts are directed towards the discovery of new drug targets, overcoming resistance to targeted therapy, and the development of monoclonal antibodies and antibody–drug conjugates. In the field of immunotherapy, the emphasis lies in enhancing the response rate to immune checkpoint inhibitors, determining the mechanisms behind resistance to immunotherapy, and improving the safety of treatment. The research in traditional Chinese medicine (TCM) covers evidence-based evaluation studies on TCM treatment, the identification of populations that can gain the most benefit from TCM, and strategies for improving the quality of life. In the area of novel drug development, cutting-edge technologies, such as organoid-based screening for anticancer drugs, synthetic biology, and artificial intelligence, are under investigation. Conclusion New targeted drugs, immune efficacy improvement, multidisciplinary integration, nano-delivery, and TCM innovation are the key research directions in the field of tumor therapy in the future.
2.Yttrium-90 selective internal radiation therapy on liver cancer: the past, the present, and the future
Jingqin MA ; Linhong ZHANG ; Minjie YANG ; Jiabin CAI ; Ying FANG ; Rong LIU ; Xudong QU ; Lingxiao LIU ; Zhiping YAN
Chinese Journal of Clinical Medicine 2025;32(1):3-8
Yttrium-90 selective internal radiation therapy (90Y-SIRT) is a treatment technique that delivers radioactive microspheres precisely to the arterial vascular bed of neoplasms, utilizing beta radiation to administer a high local dose of radiation to the neoplasm tissues. This technology has demonstrated significant efficacy in patients with unresectable pirmary liver cancers and liver metastases. This article systematically reviews the development history and clinical application status of 90Y-SIRT in the treatment of liver cancer, and looks forward to future development directions.
3.Exploring the safety and the countermeasures of rational use of Psoraleae Fructus based on the evolution of efficacy/toxicity records in ancient and modern literature
Ying-jie XU ; Xiao-yan ZHAN ; Zhao-fang BAI ; Xiao-he XIAO
Acta Pharmaceutica Sinica 2025;60(2):314-322
Psoraleae Fructus is derived from the dried fruit of the
4.Research on compaction behavior of traditional Chinese medicine compound extract powders based on unsupervised learning
Ying FANG ; Yan-long HONG ; Xiao LIN ; Lan SHEN ; Li-jie ZHAO
Acta Pharmaceutica Sinica 2025;60(2):506-513
Direct compression is an ideal method for tablet preparation, but it requires the powder's high functional properties. The functional properties of the powder during compression directly affect the quality of the tablet. 15 parameters such as Py, FES-8KN,
5.Intratumoral Microbiota Promotes Tumor Progression by Modulating Tumor Metabolism
Yan WANG ; Yi XIE ; Yuhang FANG ; Liyuan FANG ; Ying ZHANG
Cancer Research on Prevention and Treatment 2025;52(10):855-860
A wealth of prior studies has confirmed that intratumoral microbiota can survive within tumor tissue, thereby promoting or inhibiting tumor growth. With the development of high-throughput sequencing and metabolomics, increasing attention has been paid to the correlation between intratumoral microbiota and host metabolism, and their effect on tumorigenesis and progression. This review focuses on the interaction between intratumoral microbiota and tumor metabolism. It emphasizes the effects of intratumoral microbiota on tumor sugar, lipid, and amino acid metabolism and explores emerging therapeutic strategies for guiding tumor prevention and treatment by modulating tumor metabolism. Although the specific role of intratumoral microbiota in tumor metabolism remains to be further studied, a deepened understanding of the interaction between tumor-specific microbiota and tumor metabolism may provide new directions and application prospects for tumor prevention and treatment.
6.Exploration of mechanism of action of tretinoin polyglucoside in rats with IgA nephropathy based on mitochondrial dynamics
Yan-Min FAN ; Shou-Lin ZHANG ; Hong FANG ; Xu WANG ; Han-Shu JI ; Ji-Chang BU ; Ke SONG ; Chen-Chen CHEN ; Ying DING ; Chun-Dong SONG
Chinese Pharmacological Bulletin 2024;40(11):2069-2074
Aim To investigate the effects of multi-gly-cosides of Tripterygium wilfordii(GTW)on mitochon-drial dynamics-related proteins and the mechanism of nephroprotective effects in IgA nephrophathy(IgAN)rats.Methods SPF grade male SD rats were random-ly divided into the Control group,modelling group,prednisone group(6.25 mg·kg·d-1)and GTW group(6.25 mg·kg·d-1).The IgAN rat model was established by the method of"bovine serum albumin(BSA)+carbon tetrachloride(CCl4)+lipopolysac-charide(LPS)".The total amount of urinary protein(24 h-UTP)and erythrocyte count in urine were meas-ured in 24 h urine.Blood biochemistry of serum albu-min(ALB),alanine aminotransferase(ALT),urea ni-trogen(BUN),and creatinine(Scr)were measured in abdominal aorta of the rats;immunofluorescence and HE staining were used to observe the histopathology of the kidneys;RT-PCR and Western blotting were used to detect the mRNA and protein expression levels of key proteins regulating mitochondrial division and fu-sion:dynamin-related protein 1(Drp1),mitochondrial fusion protein 1(Mfn1),and mitochondrial fusion pro-tein 2(Mfn2),and PTEN-induced putative kinase 1(Pink1),in the kidney tissue of rats.Results GTW significantly reduced urinary erythrocyte count and 24 h-UTP,decreased serum ALT,BUN and Scr levels,in-creased serum ALB levels,improved renal histopatho-logical status in IgAN rats,increased the protein and mRNA expression levels of Mfn1,Mfn2,and Pink1,and decreased the protein and mRNA expression levels of Drp1 in renal tissues.Conclusions GTW may regu-late mitochondrial structure and maintain the dynamic balance of mitochondrial dynamics by promoting the ex-pression of Mfn1,Mfn2,Pink1 and decreasing Drp1.This may result in a reduction in urinary erythrocyte counts and proteinuria,and an improvement in renal function.
7.Effects of Tripterygium glycosides tablets on LIGHT-HVEM/LTβR pathway in rats with IgA nephropathy
Xu WANG ; Hong FANG ; Yan-Min FAN ; Han-Shu JI ; Ke SONG ; Chen-Chen CHEN ; Ji-Chang BU ; Ying DING ; Chun-Dong SONG
Chinese Pharmacological Bulletin 2024;40(12):2277-2282
Aim To explore the mechanism of action of Tripterygium glycosides tablets on kidney of rats with IgA nephropathy based on inflammation-related path-ways.Methods Forty-five male SD rats of SPF grade were randomly divided into control group and modeling group.In addition to the blank group,the modeling group used the combination of bovine serum albumin(BSA)+carbon tetrachloride(CC14)+lipopolysac-charide(LPS)to establish the IgA nephropathy rat model.Successfully modeled rats were randomly divid-ed into the model group,the prednisone group and Tripterygium glycosides tablets group,and the treat-ment group was given the drug by gavage from the 13 th week,and the 24 hours urine,blood and kidney tis-sues of the rats were collected and examined after 4 weeks of the administration of the drug.Urine erythro-cyte count,quantitative 24-h urine protein(24 h-UTP),urea nitrogen(BUN),and blood creatinine(Scr)were detected in each group;serum interleukin 1β(IL-1β)and tumor necrosis factor α(TNF-α)were detected by enzyme-linked immunosorbent assay(Elisa);the pathological changes in the renal tissues of the rats in each group were observed by horizontal hematoxylin-eosin(HE)staining;and the renal tis-sues in each group were observed by Western blotting.The expressions of LIGHT,HVEM,LTβR proteins and their mRNAs in rat kidney tissue were detected by Western blot and real-time fluorescence quantitative polymerase chain reaction(RT-PCR).Results Tripterygium glycosides tablets significantly reduced the levels of urinary erythrocyte count,24 h-UTP,BUN,and Scr in IgA nephropathy rats(P<0.01),improved renal histopathology,lowered the levels of se-rum inflammatory factors IL-1β and TNF-α(P<0.01),and lowered the levels of LIGHT,HVEM,LTβR proteins and their mRNA expression in renal tis-sues(P<0.01).Conclusions Tripterygium glyco-sides tablets may inhibit the immune response and re-duce the release of inflammatory factors by down-regu-lating the LIGHT-HVEM/LT(3R pathway,thus reduc-ing the inflammatory response,lowering the urinary e-rythrocytes and urinary proteins,improving the renal nephron pathologic injury,and protecting the renal function.
8.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
9.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
10.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.

Result Analysis
Print
Save
E-mail