1.Mechanism of Maxiong Powder in inhibiting Epac1-Piezo2 signaling pathway in medial habenular nucleus-interpeduncular nucleus of rats with neuropathic pain.
Xin-Yuan WANG ; Zhi CHEN ; Ying LIU ; Jian SUN ; Ru-Jie LI ; Zhi-Guo WANG ; Mei-Yu ZHANG
China Journal of Chinese Materia Medica 2025;50(10):2719-2729
Central sensitization(CS) is an important factor in inducing neuropathic pain(NPP), and the association between signal transduction protein 1(Epac1) and piezoelectric type mechanosensitive ion channel component 2(Piezo2) is a new and significant pathway for initiating CS. This study whether the central analgesic effect of Maxiong Powder is achieved through the synchronized regulation of the Epac1-Piezo2 signaling pathway in the medial habenular nucleus(MHb) and interpeduncular nucleus(IPN) of the brain. Dynamic in vivo microdialysis, combined with high-performance liquid chromatography-fluorescence detection(HPLC-RFC), behavioral assessments, immunohistochemistry, Western blot, and quantitative reverse transcription PCR, were employed in rats with partial sciatic nerve injury(SNI) to investigate the distribution and expression of Epac1 and Piezo2 proteins and genes in the MHb and IPN regions, and the changes in the extracellular levels of glutamate(Glu), aspartic acid(Asp), and glycine(Gly). Compared with the sham group, rats in the SNI group showed significantly reduced analgesic activity, a significant increase in cold pain sensitivity scores, and elevated Glu levels in the MHb and IPN regions. Additionally, the number of Piezo2-positive cells in these regions, as well as the expression levels of Epac1 and Piezo2 proteins and genes, were significantly increased. Compared with the SNI group, after Maxiong Powder administration, the analgesic activity in rats significantly increased, and cold pain sensitivity scores were significantly reduced. Maxiong Powder also significantly decreased the Glu content in the MHb and IPN regions and the Gly content in the MHb region, while significantly increasing the Asp content in both regions. Furthermore, Maxiong Powder significantly reduced the number of Piezo2-positive cells and lowered the protein and gene expression levels of Epac1 and Piezo2 in both brain regions. The central analgesic effect of Maxiong Powder may be related to its inhibition of Glu and Gly release in the extracellular fluid of the MHb and IPN regions, the increase of Asp levels in these regions, and the regulation of the Epac1-Piezo2 pathway through the reduction of Epac1 and Piezo2 protein and gene expression. These results provide partial scientific evidence for the clinical analgesic efficacy of Maxiong Powder and offer new ideas and approaches for the clinical treatment of NPP.
Animals
;
Neuralgia/genetics*
;
Rats
;
Signal Transduction/drug effects*
;
Male
;
Rats, Sprague-Dawley
;
Guanine Nucleotide Exchange Factors/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Habenula/drug effects*
;
Ion Channels/genetics*
;
Humans
2.Cardiofaciocutaneous syndrome caused by microdeletion of chromosome 19p13.3: a case report and literature review.
Cui-Yun LI ; Ying XU ; Ru-En YAO ; Ying YU ; Xue-Ting CHEN ; Wei LI ; Hui ZENG ; Li-Ting CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(7):854-858
This article reports a child with cardioaciocutaneous syndrome (CFCS) caused by a rare microdeletion of chromosome 19p13.3, and a literature review is conducted. The child had unusual facies, short stature, delayed mental and motor development, macrocephaly, and cardiac abnormalities. Whole-exome sequencing identified a 1 040 kb heterozygous deletion in the 19p13.3 region of the child, which was rated as a "pathogenic variant". This is the first case of CFCS caused by a loss-of-function mutation reported in China, which enriches the genotype characteristics of CFCS. It is imperative to enhance the understanding of CFCS in children. Early identification based on its clinical manifestations should be pursued, and genetic testing should be performed to facilitate diagnosis.
Humans
;
Chromosome Deletion
;
Chromosomes, Human, Pair 19/genetics*
;
Ectodermal Dysplasia/genetics*
;
Facies
;
Failure to Thrive/genetics*
;
Heart Defects, Congenital/genetics*
3.Maternal depressive symptoms and adolescent suicidal ideation: the chain mediating roles of childhood trauma and ineffectiveness.
Ying-Yan ZHONG ; Yu-Ting LI ; Jian-Hua CHEN ; Ru-Meng CHEN ; En-Zhao CONG ; Yi-Feng XU
Chinese Journal of Contemporary Pediatrics 2025;27(11):1317-1325
OBJECTIVES:
To investigate the association between maternal depressive symptoms and adolescent suicidal ideation, and to examine the chain mediating roles of childhood trauma and ineffectiveness.
METHODS:
A cross-sectional online survey was administered by school psychologists to 4 157 mother-adolescent pairs from middle schools in Shanghai and Henan, China. Measures included the Center for Epidemiological Studies Depression Scale, the Childhood Trauma Questionnaire, and the Children's Depression Inventory. Using Bootstrap method to examine the chain mediating effect of childhood trauma and ineffectiveness on the relationship between maternal depression symptoms and adolescent suicidal ideation.
RESULTS:
The prevalence of maternal depressive symptoms was 17.68% (735/4 157); among adolescents, the prevalence of depressive symptoms was 15.49% (644/4 157), and suicidal ideation was 28.19% (1 172/4 157). Adolescent depressive symptoms and suicidal ideation were positively correlated with maternal depressive symptoms, childhood trauma, and ineffectiveness (all P<0.01). Childhood trauma significantly mediated the association between maternal and adolescent depressive symptoms (95%CI: 0.046 9-0.077 2). The chain mediation of childhood trauma and ineffectiveness in the association between maternal depressive symptoms and adolescent suicidal ideation was also significant (95%CI: 0.000 7-0.001 3).
CONCLUSIONS
Higher maternal depressive symptom levels are associated with a greater likelihood of adolescents' exposure to childhood trauma, which increases adolescents' ineffectiveness and, in turn, is associated with suicidal ideation. This chain effect has important implications for social interventions targeting adolescent depression.
Humans
;
Suicidal Ideation
;
Adolescent
;
Female
;
Depression/etiology*
;
Cross-Sectional Studies
;
Mothers/psychology*
;
Male
;
Child
;
Adult
4.Circadian and non-circadian regulation of the male reproductive system and reproductive damage: advances in the role and mechanisms of clock genes.
Meng-Chao HE ; Ying-Zhong DAI ; Yi-Meng WANG ; Qin-Ru LI ; Si-Wen LUO ; Xi LING ; Tong WANG ; Jia CAO ; Qing CHEN
Acta Physiologica Sinica 2025;77(4):712-720
Recently, male reproductive health has attracted extensive attention, with the adverse effects of circadian disruption on male fertility gradually gaining recognition. However, the mechanism by which circadian disruption leads to damage to male reproductive system remains unclear. In this review, we first summarized the dual regulatory roles of circadian clock genes on the male reproductive system: (1) circadian regulation of testosterone synthesis via the hypothalamic-pituitary-testicular (HPT) and hypothalamic-pituitary-adrenal (HPA) axes; (2) non-circadian regulation of spermatogenesis. Next, we further listed the possible mechanisms by which circadian disruption impairs male fertility, including interference with the oscillatory function of the reproductive system, i.e., synchronization of the HPT axis, crosstalk between the HPT axis and the HPA axis, as well as direct damage to germ cells by disturbing the non-oscillatory function of the reproductive system. Future research using spatiotemporal omics, epigenomic assays, and neural circuit mapping in studying the male reproductive system may provide new clues to systematically unravel the mechanisms by which circadian disruption affects male reproductive system through circadian clock genes.
Male
;
Humans
;
Animals
;
Circadian Clocks/physiology*
;
Hypothalamo-Hypophyseal System/physiology*
;
Circadian Rhythm/genetics*
;
Spermatogenesis/physiology*
;
Pituitary-Adrenal System/physiology*
;
Testis/physiology*
;
Testosterone/biosynthesis*
;
CLOCK Proteins
;
Infertility, Male/physiopathology*
5.Heart Yin deficiency and cardiac fibrosis: from pathological mechanisms to therapeutic strategies.
Jia-Hui CHEN ; Si-Jing LI ; Xiao-Jiao ZHANG ; Zi-Ru LI ; Xing-Ling HE ; Xing-Ling CHEN ; Tao-Chun YE ; Zhi-Ying LIU ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(7):1987-1993
Cardiac fibrosis(CF) is a cardiac pathological process characterized by excessive deposition of extracellular matrix(ECM). When the heart is damaged by adverse stimuli, cardiac fibroblasts are activated and secrete a large amount of ECM, leading to changes in cardiac fibrosis, myocardial stiffness, and cardiac function declines and accelerating the development of heart failure. There is a close relationship between heart yin deficiency and cardiac fibrosis, which have similar pathogenic mechanisms. Heart Yin deficiency, characterized by insufficient Yin fluids, causes the heart to lose its nourishing function, which acts as the initiating factor for myocardial dystrophy. The deficiency of body fluids leads to stagnation of blood flow, resulting in blood stasis and water retention. Blood stasis and water retention accumulate in the heart, which aligns with the pathological manifestation of excessive deposition of ECM, as a tangible pathogenic factor. This is an inevitable stage of the disease process. The lingering of blood stasis combined with water retention eventually leads to the generation of heat and toxins, triggering inflammatory responses similar to heat toxins, which continuously stimulate the heart and cause the ultimate outcome of CF. Considering the syndrome of heart Yin deficiency, traditional Chinese medicine capable of nourishing Yin, activating blood, and promoting urination can reduce myocardial cell apoptosis, inhibit fibroblast activation, and lower the inflammation level, showing significant advantages in combating CF.
Humans
;
Fibrosis/drug therapy*
;
Animals
;
Yin Deficiency/metabolism*
;
Myocardium/metabolism*
;
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/therapeutic use*
6.Metabolomics and pharmacokinetics of Corni Fructus in ameliorating myocardial ischemic injury.
Xiang-Feng LIU ; Yu WU ; Chao-Yan YANG ; Hua-Wei LIAO ; Yan-Fen CHEN ; Xin HE ; Ying-Fang WANG ; Jin-Ru LIANG
China Journal of Chinese Materia Medica 2025;50(5):1363-1376
This study aims to investigate the ameliorating effect of Corni Fructus(CF) on the myocardial ischemic injury and the pharmacokinetic properties of characteristic components of CF. The mouse model of isoproterenol-induced myocardial ischemia was established and administrated with the aqueous extract of CF. The general efficacy of CF in ameliorating the myocardial ischemic injury was evaluated based on the cardiac histopathology and the levels of myocardial injury markers: creatine kinase isoenzyme(CK-MB) and cardiac troponin I(cTn-I). The metabolomics analysis was carried out for the heart and serum samples of mice to screen the biomarkers of CF in ameliorating the myocardial ischemic injury and then the predicted biomarkers were submitted to metabolic pathway enrichment. The pharmacokinetic analysis was performed for morroniside, loganin, and cornuside Ⅰ in mouse heart and serum samples to obtain the pharmacokinetic parameters of these components. The pharmacokinetic parameters were then integrated on the basis of self-defined weighting coefficients to simulate an integrated pharmacokinetic profile of CF iridoid glycosides in the heart and serum of the mouse model of myocardial ischemia. The results indicated that CF reduced the pathological damage to cardiac cells and tissue(hematoxylin-eosin staining) and lowered the levels of CK-MB and cTn-I in the serum of the mouse model of myocardial ischemia(P<0.01). Metabolomics analysis screed out 31 endogenous metabolites in the heart and 35 in the serum as biomarkers of CF in ameliorating the myocardial ischemic injury. These biomarkers were altered by modeling and restored by CF. Six metabolic pathways in the heart and 5 in the serum were enriched based on these metabolic markers. The main integrated pharmacokinetic parameters of CF iridoid glycosides were T_(max)=1 h, t_(1/2)=(1.52±0.05) h in the heart and T_(max)=1 h, t_(1/2)=(1.56±0.50) h in the serum. Both concentration-time curves showed a double-peak phenomenon. In conclusion, CF demonstrated the cardioprotective effect by regulating metabolic pathways such as taurine and hypotaurine metabolism, and pantothenic acid and coenzyme A biosynthesis. The integrated pharmacokinetics reflect the general pharmacokinetic properties of characteristic components in CF.
Animals
;
Cornus/chemistry*
;
Mice
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Myocardial Ischemia/metabolism*
;
Humans
;
Troponin I/metabolism*
;
Myocardium/pathology*
;
Disease Models, Animal
;
Biomarkers/metabolism*
;
Creatine Kinase, MB Form/metabolism*
7.Endothelial Cell Integrin α6 Regulates Vascular Remodeling Through the PI3K/Akt-eNOS-VEGFA Axis After Stroke.
Bing-Qiao WANG ; Yang-Ying DUAN ; Mao CHEN ; Yu-Fan MA ; Ru CHEN ; Cheng HUANG ; Fei GAO ; Rui XU ; Chun-Mei DUAN
Neuroscience Bulletin 2025;41(9):1522-1536
The angiogenic response is essential for the repair of ischemic brain tissue. Integrin α6 (Itga6) expression has been shown to increase under hypoxic conditions and is expressed exclusively in vascular structures; however, its role in post-ischemic angiogenesis remains poorly understood. In this study, we demonstrate that mice with endothelial cell-specific knockout of Itga6 exhibit reduced neovascularization, reduced pericyte coverage on microvessels, and accelerated breakdown of microvascular integrity in the peri-infarct area. In vitro, endothelial cells with ITGA6 knockdown display reduced proliferation, migration, and tube-formation. Mechanistically, we demonstrated that ITGA6 regulates post-stroke angiogenesis through the PI3K/Akt-eNOS-VEGFA axis. Importantly, the specific overexpression of Itga6 in endothelial cells significantly enhanced neovascularization and enhanced the integrity of microvessels, leading to improved functional recovery. Our results suggest that endothelial cell Itga6 plays a crucial role in key steps of post-stroke angiogenesis, and may represent a promising therapeutic target for promoting recovery after stroke.
Animals
;
Nitric Oxide Synthase Type III/metabolism*
;
Mice
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Integrin alpha6/genetics*
;
Endothelial Cells/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Stroke/pathology*
;
Vascular Remodeling/physiology*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Mice, Knockout
;
Signal Transduction/physiology*
;
Mice, Inbred C57BL
;
Male
;
Neovascularization, Physiologic/physiology*
8.Polysaccharide of Alocasia cucullata Exerts Antitumor Effect by Regulating Bcl-2, Caspase-3 and ERK1/2 Expressions during Long-Time Administration.
Qi-Chun ZHOU ; Shi-Lin XIAO ; Ru-Kun LIN ; Chan LI ; Zhi-Jie CHEN ; Yi-Fei CHEN ; Chao-Hua LUO ; Zhi-Xian MO ; Ying-Bo LIN
Chinese journal of integrative medicine 2024;30(1):52-61
OBJECTIVE:
To study the in vitro and in vivo antitumor effects of the polysaccharide of Alocasia cucullata (PAC) and the underlying mechanism.
METHODS:
B16F10 and 4T1 cells were cultured with PAC of 40 µg/mL, and PAC was withdrawn after 40 days of administration. The cell viability was detected by cell counting kit-8. The expression of Bcl-2 and Caspase-3 proteins were detected by Western blot and the expressions of ERK1/2 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A mouse melanoma model was established to study the effect of PAC during long-time administration. Mice were divided into 3 treatment groups: control group treated with saline water, positive control group (LNT group) treated with lentinan at 100 mg/(kg·d), and PAC group treated with PAC at 120 mg/(kg·d). The pathological changes of tumor tissues were observed by hematoxylin-eosin staining. The apoptosis of tumor tissues was detected by TUNEL staining. Bcl-2 and Caspase-3 protein expressions were detected by immunohistochemistry, and the expressions of ERK1/2, JNK1 and p38 mRNA were detected by qRT-PCR.
RESULTS:
In vitro, no strong inhibitory effects of PAC were found in various tumor cells after 48 or 72 h of administration. Interestingly however, after 40 days of cultivation under PAC, an inhibitory effect on B16F10 cells was found. Correspondingly, the long-time administration of PAC led to downregulation of Bcl-2 protein (P<0.05), up-regulation of Caspase-3 protein (P<0.05) and ERK1 mRNA (P<0.05) in B16F10 cells. The above results were verified by in vivo experiments. In addition, viability of B16F10 cells under long-time administration culture in vitro decreased after drug withdrawal, and similar results were also observed in 4T1 cells.
CONCLUSIONS
Long-time administration of PAC can significantly inhibit viability and promote apoptosis of tumor cells, and had obvious antitumor effect in tumor-bearing mice.
Mice
;
Animals
;
Alocasia/metabolism*
;
MAP Kinase Signaling System
;
Caspase 3/metabolism*
;
Apoptosis
;
RNA, Messenger/metabolism*
9.Clinical characteristics and prognostic factors of young patients with sporadic rectal cancer liver metastasis
Yu GUAN ; Lei YANG ; Shi-Ru JIANG ; Wei-Dong DOU ; Jin-Gui WANG ; Shan-Wen CHEN ; Zhan-Bing LIU ; Ying-Chao WU
Medical Journal of Chinese People's Liberation Army 2024;49(1):23-30
Objective To identify the clinical characteristics and prognostic factors of young patients with sporadic rectal cancer liver metastasis(RCLM).Methods The clinical data of young RCLM patients at 45 years or under(n=40,as younger patient group)in Peking University First Hospital from January 2016 to January 2021 were reviewed,meanwhile,elder RCLM patient group were comprised of 82 patients older than 45-year-old in a 1:2 ratio.Proportions of categorical variables were compared between young patients and old patients.The clinicopathologic parameters were analyzed with univariate and multivariate Cox regression models and Kaplan-Meier method for demonstrating survival differences between the maximum diameter of liver metastasis and local therapy.Results One hundred and twenty-two RCLM patients were identified,the 1-,3-and 5-year survival rates of young patient group were 97.5%,47.5%,15.0%,those of elder patient group were 84.1%,26.8%,9.8%,respectively.The differences in BMI(P=0.008),primary tumor with obstruction and bleeding(P=0.006),synchronous rectal cancer liver metastases(P=0.005),the maximum diameter of liver metastasis>3 cm(P=0.019)were statistically significant between the two groups.And univariate and multivariate analyses showed that age(P=0.003),N stage(P=0.007),local therapy for liver metastases(P=0.047)and the maximum diameter of liver metastasis(P=0.030)were independent risk factors for influencing the prognosis of RCLM patients;curative resection or not of primary tumor(P=0.035)and the maximum diameter of liver metastasis(P=0.041)were independent risk factors for influencing the prognosis of young RCLM patients.Kaplan-Maier curve demonstrated survival differences between the maximum diameter of liver metastasis and local therapy for liver metastasis in RCLM patients(log-rank P=0.000).Conclusions Although with later staging of initial tumor station,young RCLM patients may obtain better survival benefit compared with old patients.Higher degree of lymph node metastasis,local therapy for liver metastases and the maximum diameter of liver metastasis>3 cm indicates poor prognosis in RCLM patients,and without curative resection of primary tumor and maximum diameter of liver metastasis are also considered as the independent poor prognostic factors of young RCLM patients.Local therapy for liver metastases appears to play an important role in the treatment strategy of RCLM patients.
10.Exploring the effects of sirolimus on the growth and development of zebrafish embryo models
Zi-Xin ZHANG ; Tong QIU ; Jiang-Yuan ZHOU ; Xue-Peng ZHANG ; Xue GONG ; Kai-Ying YANG ; Yu-Ru LAN ; Si-Yuan CHEN ; Yi JI
Chinese Pharmacological Bulletin 2024;40(12):2368-2374
Aim To explore the effects of sirolimus on the growth and development of motor,vascular,nerv-ous,and immune systems through zebrafish models.Methods After 3 hours of fertilization of zebrafish embryos,different concentrations of sirolimus were add-ed to the growth environment,and the growth and de-velopment of the embryos was recorded.Transgenic ze-brafish models labeled with blood vessels,nerves or im-mune cells were used to compare the drug effects on the growth and development of those systems.Results At the concentration of 0.5 μmol·L-1,the hatching rate and the body length(P<0.01)were significantly smaller than those of the control group,and movement was also significantly slowed down.Meanwhile,the length of axons of the nervous system,the development of intersegmental vessels,and the growth of immune cells were significantly delayed by drug treatment.But when the concentration was below 0.1 μmol·L-1,there was no statistically difference between the control group and the sirolimus group.Conclusions When the concentration of sirolimus exceeds a certain level,it can significantly slow down the growth and development of movement,blood vessels,nervous system and im-mune system of zebrafish.Therefore,in clinical prac-tice,it is important to monitor the blood concentration of sirolimus in children on time.

Result Analysis
Print
Save
E-mail