1.Sagittal splitting osteotomy of the mandibular outer cortex and autologous bone grafting for the treatment of hemifacial microsomia
Lai GUI ; Feng NIU ; Bing YU ; Jianfeng LIU ; Ying CHEN ; Xi FU ; Shixing XU ; Jia QIAO ; Qi JIN ; Yu HE ; Xuebing LIANG ; Lei CUI ; Fuhuan CHEN ; Qi CHEN
Chinese Journal of Plastic Surgery 2024;40(3):249-257
Objective:To investigate a new method for the reconstruction of hemifacial microsomia by sagittal osteotomy of the affected mandibular outer cortex combined with bone graft of mandibular outer cortex from healthy side.Methods:From March 2006 to March 2023, the clinical data of patients with hemifacial microsomia admitted to the Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences were analyzed retrospectively. Preoperative diagnosis and surgical design were performed based on clinical manifestations and imaging findings. All cases were operated under general anesthesia. The affected mandibular outer cortex was previously split by an intraoral approach, and then the mandibular outer cortex of appropriate shape and size on the healthy side was harvested and grafted into the split bone space according to the preoperative design, following by internal rigid fixation. Complications, facial appearance improvement, and patient satisfaction were followed up. Photographs were taken preoperative, immediately postoperative and at the long-term(last) postoperative follow-up, and the severity of the deformity was analyzed. CT data from preoperative, immediate postoperative, and long-term follow-up visits were imported into Surgicase Proplan medical three-dimensional image workstation in Dicom format. The mandible was reconstructed using Segmentation, and the thickness of the mandible was measured during pre-operative, immediate post-operative and long-term follow-up visits. Anova with repeated measurement design was used to compare measurements and LSD test was used for multiple comparisons. The Kruskal-Wallis rank sum test were used to statistically analyze malformation severity. P< 0.05 is considered statistically significant. Results:A total of 39 patients were included in this study, including 13 females and 26 males, with an average age of (22.21±4.57) years (15-27 years). All patients were followed up for an average of (45.56±39.41) months (6-153 months) after surgery. The grafted mandibular outer cortex grows well with the adjacent bone tissue, and the mandibular angle and mandibular body are significantly wider. Of the 39 cases, 1 developed an infection 1 year after surgery, the titanium plate was exposed, and the patient healed after debridement and removal of the immobilizing splint. The facial appearance of the other patients improved significantly. Preoperative, immediate postoperative and long term follow up of mandibular thickness measurements were compared in pairs, and the differences were statistically significant (all P<0.05). The patient’s appearance satisfaction score: the preoperative score was [2.0(1.5, 2.0)] points, the immediate postoperative score was [4.0(4.0, 4.0)] points, the score of the last postoperative follow up was [4.0(4.0, 4.0)] points. There was statistical difference in satisfaction among the three groups ( P<0.01). The preoperative scores were compared with the scores of the immediate postoperative and the last postoperative follow-up respectively, and the differences were statistically significant( P<0.01). There was no statistical significance in satisfaction between the immediate postoperative score and the score of the last postoperative follow up ( P>0.05). Conclusion:The sagittal splitting osteotomy of the mandibular outer cortex is consistent with the features of mandibular anatomy, and provides a good condition for the grafting and healing of autogenous bone. Removing the outer cortex of the mandible on the healthy side not only increases the thickness of the affected side, but also decreases the width of the angle of the mandible on the healthy side, so as to effectively correct the asymmetric deformity of the mandible. The method is simple, with few complications and good results, and is one of the ideal treatments to correct hemofacial microsomia.
2.Sagittal splitting osteotomy of the mandibular outer cortex and autologous bone grafting for the treatment of hemifacial microsomia
Lai GUI ; Feng NIU ; Bing YU ; Jianfeng LIU ; Ying CHEN ; Xi FU ; Shixing XU ; Jia QIAO ; Qi JIN ; Yu HE ; Xuebing LIANG ; Lei CUI ; Fuhuan CHEN ; Qi CHEN
Chinese Journal of Plastic Surgery 2024;40(3):249-257
Objective:To investigate a new method for the reconstruction of hemifacial microsomia by sagittal osteotomy of the affected mandibular outer cortex combined with bone graft of mandibular outer cortex from healthy side.Methods:From March 2006 to March 2023, the clinical data of patients with hemifacial microsomia admitted to the Department of Craniomaxillofacial Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences were analyzed retrospectively. Preoperative diagnosis and surgical design were performed based on clinical manifestations and imaging findings. All cases were operated under general anesthesia. The affected mandibular outer cortex was previously split by an intraoral approach, and then the mandibular outer cortex of appropriate shape and size on the healthy side was harvested and grafted into the split bone space according to the preoperative design, following by internal rigid fixation. Complications, facial appearance improvement, and patient satisfaction were followed up. Photographs were taken preoperative, immediately postoperative and at the long-term(last) postoperative follow-up, and the severity of the deformity was analyzed. CT data from preoperative, immediate postoperative, and long-term follow-up visits were imported into Surgicase Proplan medical three-dimensional image workstation in Dicom format. The mandible was reconstructed using Segmentation, and the thickness of the mandible was measured during pre-operative, immediate post-operative and long-term follow-up visits. Anova with repeated measurement design was used to compare measurements and LSD test was used for multiple comparisons. The Kruskal-Wallis rank sum test were used to statistically analyze malformation severity. P< 0.05 is considered statistically significant. Results:A total of 39 patients were included in this study, including 13 females and 26 males, with an average age of (22.21±4.57) years (15-27 years). All patients were followed up for an average of (45.56±39.41) months (6-153 months) after surgery. The grafted mandibular outer cortex grows well with the adjacent bone tissue, and the mandibular angle and mandibular body are significantly wider. Of the 39 cases, 1 developed an infection 1 year after surgery, the titanium plate was exposed, and the patient healed after debridement and removal of the immobilizing splint. The facial appearance of the other patients improved significantly. Preoperative, immediate postoperative and long term follow up of mandibular thickness measurements were compared in pairs, and the differences were statistically significant (all P<0.05). The patient’s appearance satisfaction score: the preoperative score was [2.0(1.5, 2.0)] points, the immediate postoperative score was [4.0(4.0, 4.0)] points, the score of the last postoperative follow up was [4.0(4.0, 4.0)] points. There was statistical difference in satisfaction among the three groups ( P<0.01). The preoperative scores were compared with the scores of the immediate postoperative and the last postoperative follow-up respectively, and the differences were statistically significant( P<0.01). There was no statistical significance in satisfaction between the immediate postoperative score and the score of the last postoperative follow up ( P>0.05). Conclusion:The sagittal splitting osteotomy of the mandibular outer cortex is consistent with the features of mandibular anatomy, and provides a good condition for the grafting and healing of autogenous bone. Removing the outer cortex of the mandible on the healthy side not only increases the thickness of the affected side, but also decreases the width of the angle of the mandible on the healthy side, so as to effectively correct the asymmetric deformity of the mandible. The method is simple, with few complications and good results, and is one of the ideal treatments to correct hemofacial microsomia.
3.Research status of pharmacological mechanism of PCSK9 inhibitors and discussion of their clinical application
Wen-Hui MO ; Si-Lei XU ; Xia HE ; Niu-Niu BAI ; Meng-Ying YUAN ; Zhi-Min LI ; Jiao ZHANG ; Fei WANG ; Yuan-Kun ZHENG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2438-2441
Atherosclerosis caused by disorders of lipid metabolism is the main pathological basis of atherosclerotic cardiovascular disease.Statins are the cornerstone of lipid-modulating therapy for this type of disease,but in practice there are still some patients with suboptimal lipid management.Proprotein convertase subtilisin/kexin type 9(PCSK9)inhibitors have been gradually applied as a new class of lipid-modulating drugs for the treatment in patients with this type of disease,and recent studies have shown that in addition to regulating lipid metabolism,PCSK9 inhibitors also have potential anti-inflammatory and anti-platelet activation effects.This article sorts out the multiple pharmacological mechanisms of action of PCSK9 inhibitors and the current status of clinical research of PCSK9 inhibitors.Besides,it discusses the factors that may affect the efficacy of PCSK9 inhibitors,in order to provide a reference for the safe and rational medication of PCSK9 inhibitors.
4.A multicenter retrospective cohort study on the attributable risk of patients with Acinetobacter baumannii sterile body fluid infection
Lei HE ; Dao-Bin JIANG ; Ding LIU ; Xiao-Fang ZHENG ; He-Yu QIU ; Shu-Mei WU ; Xiao-Ying WU ; Jin-Lan CUI ; Shou-Jia XIE ; Qin XIA ; Li HE ; Xi-Zhao LIU ; Chang-Hui SHU ; Rong-Qin LI ; Hong-Ying TAO ; Ze-Fen CHEN
Chinese Journal of Infection Control 2024;23(1):42-48
Objective To investigate the attributable risk(AR)of Acinetobacter baumannii(AB)infection in criti-cally ill patients.Methods A multicenter retrospective cohort study was conducted among adult patients in inten-sive care unit(ICU).Patients with AB isolated from sterile body fluid and confirmed with AB infection in each cen-ter were selected as the infected group.According to the matching criteria that patients should be from the same pe-riod,in the same ICU,as well as with similar APACHE Ⅱ score(±5 points)and primary diagnosis,patients who did not infect with AB were selected as the non-infected group in a 1:2 ratio.The AR was calculated.Results The in-hospital mortality of patients with AB infection in sterile body fluid was 33.3%,and that of non-infected group was 23.1%,with no statistically significant difference between the two groups(P=0.069).The AR was 10.2%(95%CI:-2.3%-22.8%).There is no statistically significant difference in mortality between non-infected pa-tients and infected patients from whose blood,cerebrospinal fluid and other specimen sources AB were isolated(P>0.05).After infected with AB,critically ill patients with the major diagnosis of pulmonary infection had the high-est AR.There was no statistically significant difference in mortality between patients in the infected and non-infec-ted groups(P>0.05),or between other diagnostic classifications.Conclusion The prognosis of AB infection in critically ill patients is highly overestimated,but active healthcare-associated infection control for AB in the ICU should still be carried out.
5.Environmental contamination related to the first patient with carbapenem-resistant Acinetobacter baumannii infection and the infection status of pa-tients in the intensive care unit in Tibetan areas
Cuo-Ta QIE ; Ding-Ying HE ; Fu-Yan LONG ; Xiao-Hua ZHANG ; Chun-Hua PENG ; Xiang-Xiang JIANG ; Ming-Lei DENG ; Cong FU ; Guo-Ping ZUO
Chinese Journal of Infection Control 2024;23(2):220-224
Objective To investigate the environmental contamination related to first patient with carbapenem-re-sistant Acinetobacter baumannii(CRAB)infection and the infection status of relevant patients in a newly established intensive care unit(ICU)of a hospital in Tibetan area,and analyze the transmission risk.Methods From the ad-mission in ICU of a patients who was first detected CRAB on November 15,2021 to the 60th day of hospitalization,all patients who stayed in ICU for>48 hours were performed active screening on CRAB.On the 30th day and 60th day of the admission to the ICU of the first CRAB-infected patient,environment specimens were taken respectively 2 hours after high-frequency diagnostic and therapeutic activities but before disinfection,and after disinfection but before medical activities.CRAB was cultured with chromogenic culture medium.Results Among the 13 patients who were actively screened,1 case was CRAB positive,he was transferred from the ICU of a tertiary hospital to the ICU of this hospital on November 19th.On the 40th day of admission to the ICU,he had fever,increased frequency for sputum suction,and CRAB was detected.The drug sensitivity spectrum was similar to that of the first case,and he also stayed in the adjacent bed of the first case.64 environmental specimens were taken,and 9 were positive for CRAB,with a positive rate of 14.06%,8 sampling points such as the washbasin,door handle and bed rail were positive for CRAB after high-frequency diagnostic and therapeutic activities.After routine disinfection,CRAB was detected from the sink of the washbasin.Conclusion For the prevention and control of CRAB in the basic-level ICU in ethnic areas,it is feasible to conduct risk assessment on admitted patients and adopt bundled prevention and con-trol measures for high-risk patients upon admission.Attention should be paid to the contaminated areas(such as washbasin,door handle,and bed rail)as well as the effectiveness of disinfection of sink of washbasin.
6.Evaluation of the Effect for National Centralized Drug Procurement Policy of PPIs in 33 Hospitals in Wuhan
Zhijuan LIN ; Li LIU ; Wenjuan HE ; Zhiliang ZHANG ; Zhaohui GUO ; Ping LIU ; Quan LEI ; Ying XU
Chinese Journal of Modern Applied Pharmacy 2024;41(12):1723-1728
OBJECTIVE
To analyze the use status and development trend of proton pump inhibitors(PPIs) in 33 hospitals in Wuhan, Hubei Province after the implementation of the national centralized drug procurement(NCDP) policy, and to provide reference for promoting the subsequent rational use of NCDP drugs and improving related policies.
METHODS
To make statistics and analysis of purchasing amount of PPIs, defined daily dose system(DDDs), defined daily dose consumption(DDDc) and utilization rate of 33 hospitals in Wuhan in 2019 and 2022.
RESULTS
After the implementation of the NCDP policy, the total purchasing amount of PPIs decreased by 53.6%, DDDs decreased by 15.4%, DDDc decreased by 45.2%, and the utilization rate of PPIs injectable dosage forms decreased by 12.6%. After NCDP, the highest growth rate of oral dosage forms was omeprazole(5.7%), followed by rabeprazole(5.0%), while injectable dosage forms showed a significant difference in utilization rate, with a significant decline in NCDP varieties and a significant increase in non-NCDP varieties. The overall NCDP utilization rate of PPIs in Wuhan was 64.9%, with little difference among hospitals of different grades.
CONCLUSION
The NCDP policy achieves the purpose of reducing the drug cost of patients and improving the accessibility of drugs, and is more optimized in the selection of dosage forms, which is in line with the policy expectations overall; but the quantity and price of PPIs in Wuhan decreased after NCDP, and highlighted a certain tendency in the selection of varieties. In the future, we still need to optimize measures to guide clinical priority in the selection of NCDP drugs, to ensure and improve the implementation of NCDP policy.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.


Result Analysis
Print
Save
E-mail