1.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
2.Application of CRISPR/Cas System in Precision Medicine for Triple-negative Breast Cancer
Hui-Ling LIN ; Yu-Xin OUYANG ; Wan-Ying TANG ; Mi HU ; Mao PENG ; Ping-Ping HE ; Xin-Ping OUYANG
Progress in Biochemistry and Biophysics 2025;52(2):279-289
Triple-negative breast cancer (TNBC) represents a distinctive subtype, characterized by the absence of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 (HER2). Due to its high inter-tumor and intra-tumor heterogeneity, TNBC poses significant chanllenges for personalized diagnosis and treatment. The advant of clustered regular interspaced short palindromic repeats (CRISPR) technology has profoundly enhanced our understanding of the structure and function of the TNBC genome, providing a powerful tool for investigating the occurrence and development of diseases. This review focuses on the application of CRISPR/Cas technology in the personalized diagnosis and treatment of TNBC. We begin by discussing the unique attributes of TNBC and the limitations of current diagnostic and treatment approaches: conventional diagnostic methods provide limited insights into TNBC, while traditional chemotherapy drugs are often associated with low efficacy and severe side effects. The CRISPR/Cas system, which activates Cas enzymes through complementary guide RNAs (gRNAs) to selectively degrade specific nucleic acids, has emerged as a robust tool for TNBC research. This technology enables precise gene editing, allowing for a deeper understanding of TNBC heterogeneity by marking and tracking diverse cell clones. Additionally, CRISPR facilitates high-throughput screening to promptly identify genes involved in TNBC growth, metastasis, and drug resistance, thus revealing new therapeutic targets and strategies. In TNBC diagnostics, CRISPR/Cas was applied to develop molecular diagnostic systems based on Cas9, Cas12, and Cas13, each employing distinct detection principles. These systems can sensitively and specifically detect a variety of TNBC biomarkers, including cell-specific DNA/RNA and circulating tumor DNA (ctDNA). In the realm of precision therapy, CRISPR/Cas has been utilized to identify key genes implicated in TNBC progression and treatment resistance. CRISPR-based screening has uncovered potential therapeutic targets, while its gene-editing capabilities have facilitated the development of combination therapies with traditional chemotherapy drugs, enhancing their efficacy. Despite its promise, the clinical translation of CRISPR/Cas technology remains in its early stages. Several clinical trials are underway to assess its safety and efficacy in the treatment of various genetic diseases and cancers. Challenges such as off-target effects, editing efficiency, and delivery methods remain to be addressed. The integration of CRISPR/Cas with other technologies, such as 3D cell culture systems, human induced pluripotent stem cells (hiPSCs), and artificial intelligence (AI), is expected to further advance precision medicine for TNBC. These technological convergences can offer deeper insights into disease mechanisms and facilitate the development of personalized treatment strategies. In conclusion, the CRISPR/Cas system holds immense potential in the precise diagnosis and treatment of TNBC. As the technology progresses and becomes more costs-effective, its clinical relevance will grow, and the translation of CRISPR/Cas system data into clinical applications will pave the way for optimal diagnosis and treatment strategies for TNBC patients. However, technical hurdles and ethical considerations require ongoing research and regulation to ensure safety and efficacy.
3.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
4.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
5.Residual Inflammatory Risk and Intracranial Atherosclerosis Plaque Vulnerability: Insights From High-Resolution Magnetic Resonance Imaging
Ying YU ; Rongrong CUI ; Xin HE ; Xinxin SHI ; Zhikai HOU ; Yuesong PAN ; Mingyao LI ; Jiabao YANG ; Zhongrong MIAO ; Yongjun WANG ; Rong WANG ; Xin LOU ; Long YAN ; Ning MA
Journal of Stroke 2025;27(2):207-216
Background:
and Purpose This study aimed to investigate the association between residual inflammatory risk (RIR) and vulnerable plaques using high-resolution magnetic resonance imaging (HRMRI) in symptomatic intracranial atherosclerotic stenosis (ICAS).
Methods:
This retrospective study included 70%–99% symptomatic ICAS patients hospitalized from January 2016 to December 2022. Patients were classified into four groups based on high-sensitivity C-reactive protein (hs-CRP) and low-density lipoprotein cholesterol (LDL-C): residual cholesterol inflammatory risk (RCIR, hs-CRP ≥3 mg/L and LDL-C ≥2.6 mmol/L), RIR (hs-CRP ≥3 mg/L and LDL-C <2.6 mmol/L), residual cholesterol risk (RCR, hs-CRP <3 mg/L and LDL-C ≥2.6 mmol/L), and no residual risk (NRR, hs-CRP <3 mg/L and LDL-C <2.6 mmol/L). Vulnerable plaque features on HRMRI included positive remodeling, diffuse distribution, intraplaque hemorrhage, and strong enhancement.
Results:
Among 336 included patients, 21, 60, 58, and 197 were assigned to the RCIR, RIR, RCR, and NRR groups, respectively. Patients with RCIR (adjusted odds ratio [aOR], 3.606; 95% confidence interval [CI], 1.346–9.662; P=0.011) and RIR (aOR, 3.361; 95% CI, 1.774–6.368, P<0.001) had higher risks of strong enhancement than those with NRR. Additionally, patients with RCIR (aOR, 2.965; 95% CI, 1.060–8.297; P=0.038) were more likely to have intraplaque hemorrhage compared with those with NRR. In the sensitivity analysis, RCR (aOR, 2.595; 95% CI, 1.201–5.608; P=0.015) exhibited an additional correlation with an increased risk of intraplaque hemorrhage.
Conclusion
In patients with symptomatic ICAS, RIR is associated with a higher risk of intraplaque hemorrhage and strong enhancement, indicating an increased vulnerability to atherosclerotic plaques.
6.Mechanism of Chaijin JieYu Anshen formula regulating synaptic plasticity of hippocampal neurons in insomnia-concomitant depression rats based on HDAC5/MEF2C pathway
Ting-Ting REN ; Yu-Hong WANG ; Ying-Juan TANG ; Song YANG ; Hai-Peng GUO ; Ting-Ting WANG ; Ying HE ; Ping LI ; Hong-Qing ZHAO ; Zi-Yang ZHOU ; Man-Shu ZOU
Chinese Pharmacological Bulletin 2024;40(7):1248-1257
Aim To investigate the mechanisms of Chaijin JieYu Anshen formula modulating the depres-sive behaviors and the synaptic plasticity of hippocam-pal neurons in insomnia-concomitant depression rats based on the histone deacetylase 5(HDAC5)/myocyte enhancer factor 2C(MEF2C)pathway.Methods A rat model of insomnia-concomitant depression was es-tablished by PCPA injection combined with chronic un-predictable mild stress(CUMS),and the experiment was divided into the control group,the model group,the high,medium and low dose group of Chaijin JieYu Anshen formula,and the positive drug group.The de-pression of rats was evaluated by sugar-water prefer-ence test,open field test and morris water maze.The levels of 5-hydroxytryptamine(5-HT)and dopamine(DA)in serum were measured by enzyme linked im-munosorbent assay(ELISA).The pathological damage of hippocampal neurons was observed by HE staining and Nissl staining.The damage of dendritic spines of hippocampal neurons was observed by Golgi staining,and the levels of HDAC5,MEF2C,postsynaptic densi-ty-95(PSD-95)and synaptophysin 1(SYN1)in hip-pocampus were measured by Western blot,immunohis-tochemistry and immunofluorescence.Results Com-pared with the model group,the Chaijin JieYu Anshen formula could increase the sugar-water preference rate of the model rats,reduce the immobility time in the open field experiment,increase the total activity dis-tance,shorten the evasion latency in the localization navigation experiment,and prolong the residence time in the quadrant where the platform was located in the space exploration experiment(P<0.05,P<0.01).Moreover,the Chaijin JieYu Anshen formula improved the hippocampal neuron and dendritic spine damage and increase the dendritic branch length and dendritic spine density of hippocampal neurons(P<0.01,P<0.01),restore the serum levels of 5-HT and DA in insomnia-concomitant depression rats(P<0.05,P<0.01),down-regulate the HDAC5 protein,and up-regulate the expression of MEF2C,PSD-95,and SYN1 protein(P<0.05,P<0.01 or P<0.001).Conclusions Chaijin JieYu Anshen formula may alle-viate the depression-like behavior of model rats by re-ducing the expression of HDAC5 protein,thus deregu-lating the inhibition of transcription factor MEF2C,promoting the expression of PSD-95 and SNY1 protein,and exerting a protective effect on hippocampal neurons and synapses.
7.Total saponins from Trillium tschonoskii maxim alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis through Keap-1/Nrf2/HO-1 and Nrf2/SLC7A11/GPX4 pathways
Jian-Hong GAO ; Tian-Ying SONG ; Chao-Xi TIAN ; Fang-Yu ZHAO ; Yi-Duo HE ; Xin LIU ; Xian-Bing CHEN
Chinese Pharmacological Bulletin 2024;40(10):1850-1857
Aim To examine the neuroprotective im-pacts of total saponins from Trillium tschonoskii maxim(TST)on cerebral ischemia-reperfusion injury(CIRI)in rats and delve into the mechanisms of ferroptosis.Methods The CIRI model was prepared by dividing male SD rats into the model group,TST(0.1 g·kg-1)group,Donepezil hydrochloride(0.45 mg·kg-1)group,and sham group.The cognitive functions of rats in each group were assessed through the Morris water maze test,the changes in neurological function were evaluated using the Zea-Longa method,the infarct area was observed via TTC staining,and the pathologi-cal alterations in brain tissue were analysed using HE and Nissl staining.To further investigate the underly-ing mechanism,the mitochondrial structural changes were examined using transmission electron microscopy,and the levels of GSH-PX,MDA,and SOD were ana-lyzed.Additionally,the expressions of GPX4 and Nrf2 proteins were evaluated through immunohistochemistry and immunofluorescence.Furthermore,the protein lev-els of Keap1/Nrf2/HO-1 and Nrf2/SLC7A11/GPX4 pathways in rats were examined using Western blot-ting.Results The rats in the model group displayed diminished learning and memory capabilities in com-parison to those in the sham group,as well as a signifi-cantly increased cerebral infarction area and higher neurological function scores(P<0.01),significantly increased cerebral infarct area,disordered and loosely arranged neurons,and reduced Nissl bodies.Addition-ally,mitochondria showed typical signs of ferroptosis.Changes related to ferroptosis included decreased activ-ities of SOD and GSH-PX(P<0.01)and increased MDA levels(P<0.01).The expression of GPX4 and Nrf2-positive cells was significantly reduced,along with decreased fluorescence intensity of GPX4.Further-more,the protein expression of Keap1,Nrf2,HO-1,GPX4,SLC7A11 in the hippocampus decreased(P<0.05,P<0.01).Following the administration of TST,these effects showed improvement.Conclusions TST has neuroprotective effects,enhancing learning and memory abilities while reducing oxidative stress levels.The mechanism may involve the inhibition of ferroptosis through the Keap-1/Nrf2/HO-1 and Nrf2/SLC7 A11/GPX4 pathways.
8.Knockdown of chemokine receptor 3 inhibits hepatoblastoma cell proliferation and migration by weakening Wnt/β-catenin signaling pathway
Dao-Kui DING ; Yu-Hang YUAN ; Yan-An LI ; Xi-Chun CUI ; He-Ying YANG ; Jia DU ; Yang-Guang SU
Chinese Pharmacological Bulletin 2024;40(12):2347-2354
Aim To investigate the role and mecha-nism of CXC chemokine receptor 3(CXCR3)in hepa-toblastoma(HB).Methods The expression of CX-CR3 was detected by immunohistochemical and West-ern blot in 16 cases of HB tissue and adjacent normal liver tissue.The HB cells(Huh-6 and HepT1)were transfected with Con-shRNA,CXCR3-shRNA1,and CXCR3-shRNA2,respectively,and then divided into the Con-shRNA group,CXCR3-shRNA1 group,and CXCR3-shRNA2 group.Cell proliferation was detected by CCK-8 assay and EdU staining.Cell migration and invasion were detected by scratch and Transwell as-says.The expressions of β-catenin,c-Myc,cyclin D1,MMP-7 and MMP-9 were detected by Western blot.The tumor formation and tumor volume in each group were assessed using nude mouse xenograft tumor model,while the expressions of MMP-9 and Ki67 in tumor tissue were examined by immunohistochemistry.Results The expression of CXCR3 was up-regulated in HB tissue(P<0.01).Compared to the Con-shR-NA group,the viability,proliferation,migration and invasion of Huh-6 and HepT1 cells in the CXCR3-shR-NA1 and CXCR3-shRNA2 groups were reduced(P<0.01),the expressions of the Wnt/β-catenin signaling pathway related proteins were attenuated(P<0.01),the tumor grew slowly and the volume was significantly reduced(P<0.01),and the expressions of MMP-9 and Ki67 in tumor tissue decreased(P<0.01).Con-clusions Downregulation of CXCR3 hinders the pro-liferation and migration of HB cells,potentially as-cribed to the attenuation of Wnt/β-catenin signaling regulation.
9.The relationship between the status of infarct-related artery occlusion and thrombus types in patients with non-ST-segment elevation myocardial infarction
Qing HE ; Shu-Juan DONG ; Jing-Chao LI ; Hai-Jia YU ; Hui-Hui SONG ; Lu-Qian CUI ; Ying-Jie CHU
Chinese Journal of Interventional Cardiology 2024;32(4):203-210
Objective To explore the relationship between the status of infarct related artery(IRA)occlusion and thrombus types in patients with non-ST-segment elevation myocardial infarction(NSTEMI)using optical coherence tomography(OCT).Methods A total of 170 NSTEMI patients who underwent emergency percutaneous coronary intervention at Henan Provincial People1s Hospital from October 2021 to August 2023 and underwent OCT examination were included in the study.Among them,83 cases were in the total occlusion group and 87 cases were in the non-total occlusion group.The baseline characteristics,coronary angiography findings,and OCT results of the patients were compared and analyzed.Results Compared with the non-total occlusion group,the patients in the total occlusion group were more younger(P=0.013),the proportion of male was higher(P=0.026),and the proportion of patients with hypertension(P=0.010)and diabetes(P=0.033)was lower.In the total occlusion group,left circumflex artery(LCX)served as the main IRA,whereas in the non-total occlusion group,left anterior descending(LAD)was the predominant IRA(P=0.012);In addition,there was a significantly higher occurrence of rentrop grade Ⅱ~Ⅲ in the total occlusion group compared to the non-total occlusion group(P=0.022).The OCT results showed that in most cases,the total occlusion group was caused by plaque rupture events(P=0.014),mainly red/mixed thrombus(P<0.001);The non-total occlusion group was more commonly associated with plaque erosion events(P=0.014),with white thrombus being the main cause(P<0.001).Conclusions Total occlusion of infarct-related artery in NSTEMI patients often occurs in the LCX,and the patient is more younger,the thrombus type is mainly red/mixed thrombus,while non-total occlusion lesions are mainly white thrombus.
10.D-shant atrial shunt device implantable in patients with severe pulmonary hypertension and right heart failure:one case report and literature review
Shu-Na XIAO ; Wen-Jie GAO ; Xiao-Ke SHANG ; Chang-Dong ZHANG ; Yu-Cheng ZHONG ; Ying ZHI ; Lin-Li QIU ; Yan-Fei DONG ; Yan HE ; Wei TIAN ; Wen-Wen TANG
Chinese Journal of Interventional Cardiology 2024;32(8):472-477
To evaluate the effectiveness and safety of implantable D-shant atrial shunt device in patients with severe pulmonary arterial hypertension(PAH)and right heart failure.A 53-year-old female patient diagnosed with severe idiopathic PAH and right heart failure,her WHO FC grade was Ⅳ.The right heart catheter and implantation of D-shant atrial shunt device were performed under local anesthesia on November 30,2021.A 6 mm×4 cm peripheral artery balloon was selected to dilate the atrial septum and a D-shant atrial shunt device with a fixed 4 mm diameter orifice was implanted into the heart.The clinical symptoms and hemodynamics of the patient was improved after the intervention.Implantation of atrial shunt device as a palliative therapy to established a right to left shunt is another strategy for treating patients with severe PAH in late period,which has good effectiveness and safety.It could be the last replacement therapy to improve symptoms and prolonged lives to drug resistant and severe PAH patients.

Result Analysis
Print
Save
E-mail