1.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
2.Effects of Shugan jieyu capsules on the pharmacokinetics of voriconazole,rivaroxaban and apixaban in rats
Ying LI ; Chunhui SHAN ; Yizhen SONG ; Yinling MA ; Zhi WANG ; Caihui GUO ; Zhanjun DONG
China Pharmacy 2025;36(12):1470-1475
OBJECTIVE To investigate the effects of multiple doses of Shugan jieyu capsules on the pharmacokinetics of voriconazole, rivaroxaban and apixaban in rats. METHODS Male SD rats were randomly divided into voriconazole group (30 mg/kg), rivaroxaban group (2 mg/kg), apixaban group (0.5 mg/kg), Shugan jieyu capsules+voriconazole group (145 mg/kg+30 mg/kg), Shugan jieyu capsules+rivaroxaban group (145 mg/kg+2 mg/kg), Shugan jieyu capsules+apixaban group (145 mg/kg+0.5 mg/kg), with 6 rats in each group. After the rats in each group were consecutively administered solvent (0.5% sodium carboxymethyl cellulose solution) or Shugan jieyu capsules by intragastric gavage for 8 days, they were respectively given voriconazole, rivaroxaban and apixaban solution by intragastric gavage on the 8th day. Blood samples were then collected at different time points (in voriconazole group, rivaroxaban group and corresponding drug combination groups, blood was collected before administration and at 0.17, 0.34, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 6, 8, 10 and 12 hours post-administration; in apixaban group and corresponding drug combination group, blood was collected before administration and at 0.08, 0.17, 0.25, 0.34, 0.5, 0.75, 1, 3, 5, 7, 10 and 12 hours post-administration). Ultra-high performance liquid chromatography-tandem mass spectrometry method was employed to determine the mass concentrations of voriconazole, rivaroxaban and apixaban in rat plasma. The main pharmacokinetic parameters of these drugs were calculated using a non-compartmental model, and the comparisons were made between groups. RESULTS Compared with single drug group, after multiple administrations of Shugan jieyu capsules, AUC0-t, AUC0-∞ and cmax of voriconazole were significantly decreased, while CLz/F was significantly increased, and tmax was also significantly prolonged (P<0.05). For rivaroxaban and apixaban, their tmax values were both significantly prolonged (P<0.05). However, there were no statistically significant differences in the other pharmacokinetic parameters between the two groups (P>0.05). CONCLUSIONS The combination of Shugan jieyu capsules can decrease the exposure, increase the clearance, and delay the peak concentration of oral voriconazole. However, it does not affect the exposure levels of rivaroxaban and apixaban, but it does delay the time to reach peak concentration for both drugs.
3.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
4.Virtual reality-based cognitive training for MCI in the elderly: A feasibility randomised pilot study.
Zaylea KUA ; Rebecca Hui Shan ONG ; Nicole Yun Ching CHEN ; Peng Soon YOON ; Samuel Teong Huang CHEW ; YanHong DONG ; Louisa Mei Ying TAN
Annals of the Academy of Medicine, Singapore 2025;54(7):445-447
5.Early assessment of responsive neurostimulation for drug-resistant epilepsy in China: A multicenter, self-controlled study.
Yanfeng YANG ; Penghu WEI ; Jianwei SHI ; Ying MAO ; Jianmin ZHANG ; Ding LEI ; Zhiquan YANG ; Shiwei SONG ; Ruobing QIAN ; Wenling LI ; Yongzhi SHAN ; Guoguang ZHAO
Chinese Medical Journal 2025;138(4):430-440
BACKGROUND:
To evaluate the efficacy and safety of the first cohort of people in China treated with a responsive neurostimulation system (Epilcure TM , GenLight MedTech, Hangzhou, China) for focal drug-resistant epilepsy in this study.
METHODS:
This multicenter, before-and-after self-controlled study was conducted across 8 centers from March 2022 to June 2023, involving patients with drug-resistant epilepsy who were undergoing responsive neurostimulation (RNS). The study was based on an ongoing multi-center, single-blind, randomized controlled study. Efficacy was assessed through metrics including median seizure count, seizure frequency reduction (SFR), and response rate. Multivariable linear regression analysis was conducted to explore the relationships of basic clinical factors and intracranial electrophysiological characteristics with SFR. The postoperative quality of life, cognitive function, depression, and anxiety were evaluated as well.
RESULTS:
The follow-up period for the 19 participants was 10.7 ± 3.4 months. Seizure counts decreased significantly 6 months after device activation, with median SFR of 48% at the 6th month (M6) and 58% at M12 ( P <0.05). The average response rate after 13 months of treatment was 42%, with 21% ( n = 4) of the participants achieving seizure freedom. Patients who have previously undergone resective surgery appear to achieve better therapeutic outcomes at M11, M12 and M13 ( β <0, P <0.05). No statistically significant differences were observed in patients' scores of quality of life, cognition, depression and anxiety following stimulation when compared to baseline measurements. No serious adverse events related to the devices were observed.
CONCLUSIONS:
The preliminary findings suggest that Epilcure TM exhibits promising therapeutic potential in reducing the frequency of epileptic seizures. However, to further validate its efficacy, larger-scale randomized controlled trials are required.
REGISTRATION
Chinese Clinical Trial Registry (No. ChiCTR2200055247).
Humans
;
Female
;
Male
;
Drug Resistant Epilepsy/therapy*
;
Adult
;
Young Adult
;
Middle Aged
;
China
;
Adolescent
;
Treatment Outcome
;
Quality of Life
;
Single-Blind Method
;
Seizures
;
Electric Stimulation Therapy/methods*
6.Life's Essential 8 metrics and prognosis in patients with renal insufficiency: Results from the National Health and Nutrition Examination Survey, 2007-2018.
Weihua CHEN ; Guitao XIAO ; Shan DING ; Shanshan SHI ; Yuxiong PAN ; Jiabin TU ; Yanbin ZHANG ; Ying LIAO ; Liling CHEN ; Kaihong CHEN ; Rongchong HUANG
Chinese Medical Journal 2025;138(21):2824-2831
BACKGROUND:
The benefits of ideal cardiovascular-health metrics (ICVHMs) in patients with renal insufficiency remain unclear. This study aimed to investigate the associations between ICVHM and prognosis in a renal insufficiency population.
METHODS:
The trial enrolled 29,682 participants from the US National Health and Nutrition Examination Survey (NHANES), 2007-2018, with mortality follow-up through December 31, 2019. Participants were divided into three groups based on estimated glomerular filtration rates. Cardiovascular health was assessed using new "Life's Essential 8" metrics. Cox regression analyses based on NHANES data were used to determine the associations between ICVHMs and cardiovascular mortality in patients with renal insufficiency.
RESULTS:
During a mean follow-up of 6.58 years, ideal cardiovascular health (hazard ratio [HR] = 0.42; 95% confidence interval [CI]; 0.25-0.70) and ideal health behavior (HR = 0.53; 95% CI; 0.39-0.73) reduced cardiovascular mortality in participants with renal insufficiency. For each one ICVHM increment, a 25% reduction in cardiovascular mortality was recorded (95% CI; 0.69-0.82). When compared with participants with normal renal function, for those with mild renal insufficiency, the HR for cardiovascular mortality gradually decreased from 1.47 (95% CI; 0.85-2.52) in those who had ≤1 ICVHMs to 0.30 (95% CI; 0.12-0.77) in participants who had >6 ICVHMs.
CONCLUSIONS
From an ICVHM perspective, enhanced cardiovascular benefits were observed in individuals with renal insufficiency, coupled with a reduced risk of all-cause mortality. Furthermore, when compared with individuals with normal renal function, increased ICVHMs can mitigate adverse risks associated with renal impairment.
Humans
;
Male
;
Female
;
Nutrition Surveys
;
Middle Aged
;
Renal Insufficiency/physiopathology*
;
Aged
;
Prognosis
;
Adult
;
Cardiovascular Diseases/mortality*
;
Glomerular Filtration Rate/physiology*
;
Proportional Hazards Models
7.Identification of GSK3 family and regulatory effects of brassinolide on growth and development of Nardostachys jatamansi.
Yu-Yan LEI ; Zheng MA ; Jing WEI ; Wen-Bing LI ; Ying LI ; Zheng-Ming YANG ; Shao-Shan ZHANG ; Jing-Qiu FENG ; Hua-Chun SHENG ; Yuan LIU
China Journal of Chinese Materia Medica 2025;50(2):395-403
This study identified 8 members including NjBIN2 of the GSK3 family in Nardostachys jatamansi by bioinformatics analysis. Moreover, the phylogenetic tree revealed that the GKS3 family members of N. jatamansi had a close relationship with those of Arabidopsis. RT-qPCR results showed that NjBIN2 presented a tissue-specific expression pattern with the highest expression in roots, suggesting that NjBIN2 played a role in root growth and development. In addition, the application of epibrassinolide or the brassinosteroid(BR) synthesis inhibitor(brassinazole) altered the expression pattern of NjBIN2 and influenced the photomorphogenesis(cotyledon opening) and root development of N. jatamansi, which provided direct evidence about the functions of NjBIN2. In conclusion, this study highlights the roles of BIN2 in regulating the growth and development of N. jatamansi by analyzing the expression pattern and biological function of NjBIN2. It not only enriches the understanding about the regulatory mechanism of the growth and development of N. jatamansi but also provides a theoretical basis and potential gene targets for molecular breeding of N. jatamansi with improved quality in the future.
Brassinosteroids/metabolism*
;
Steroids, Heterocyclic/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Plant Proteins/metabolism*
;
Phylogeny
;
Nardostachys/metabolism*
;
Plant Growth Regulators/pharmacology*
;
Plant Roots/drug effects*
8.Mechanism of Chaishao Kaiyu Decoction in ameliorating hippocampal neuroinflammation in depressed rats based on complement component C3/C3aR pathway.
Ying-Juan TANG ; Hai-Peng GUO ; Man-Shu ZOU ; Yuan-Shan HAN ; Jun-Cheng LIU ; Yu-Hong WANG
China Journal of Chinese Materia Medica 2025;50(1):1-9
This study investigated the mechanism of Chaishao Kaiyu Decoction in improving hippocampal neuroinflammation in depressed rats based on complement component 3(C3)/C3 receptor(C3aR). A total of 60 SD rats were randomly divided into a blank group, a model group, high, medium, and low dose groups of Chaishao Kaiyu Decoction, and a positive drug group, with 10 rats in each group. Except for the blank group, chronic unpredictable mild stress(CUMS) was used to construct depression models in other groups. Sucrose preference, open-field experiment, forced swimming, and water maze were used to detect the changes in depression-like behavior in each group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the serum inflammatory factor level in rats, and hematoxylin-eosin(HE) staining and Nissl staining were employed to observe the pathological damage of hippocampal neurons. Golgi-Cox staining was used to observe the dendritic spine damage of hippocampal neurons, and immunofluorescence and Western blot were utilized to detect the expression of microglial marker Iba-1 and C3/C3aR protein in the hippocampus of rats. The behavioral results showed that compared with the model group, Chaishao Kaiyu Decoction could significantly strengthen the sugar water preference, increase the distance and number of voluntary activities, shorten the immobility time in forced swimming and the successful incubation period of positioning navigation, and prolong the stay time of space exploration in the target quadrant. ELISA results showed that the content of inflammatory factors in the hippocampus of depressed rats was significantly higher than that of the blank group, and the content of inflammatory factors decreased significantly after the intervention of Chaishao Kaiyu Decoction. In addition, Chaishao Kaiyu Decoction could relieve pathological damage such as cell swelling and loose arrangement of hippocampus tissue. In the Western blot experiment, the expression levels of C3 and C3aR proteins in the model group were higher than those in the blank group, while the expression of C3 and C3aR in Chaishao Kaiyu Decoction could be down-regulated. Immunofluorescence results showed that compared with the model group, the fluorescence intensity of microglia marker Iba-1 decreased significantly after the intervention of Chaishao Kaiyu Decoction and positive drugs. The antidepressant effect of Chaishao Kaiyu Decoction may be related to the down-regulation of C3/C3aR signaling pathway-related proteins, thus alleviating hippocampal inflammation.
Animals
;
Hippocampus/metabolism*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Male
;
Depression/metabolism*
;
Complement C3/metabolism*
;
Receptors, Complement/metabolism*
;
Humans
;
Neuroinflammatory Diseases/genetics*
9.Inhibition of ISO-induced hypertrophy and damage in H9c2 cells by total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma via promoting autophagy.
Cheng-Zhi XIE ; Ying ZHANG ; Chang FU ; Xiao-Shan CUI ; Rui-Na HAO ; Jian-Xun REN
China Journal of Chinese Materia Medica 2025;50(7):1841-1849
This paper primarily investigated the protective effects and potential mechanisms of total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma in alleviating isoprenaline(ISO)-induced hypertrophy and damage in H9c2 cardiomyocytes. Initially, H9c2 cardiomyocytes were used as the research subject to analyze the effects of ISO at different concentrations on cell hypertrophy and damage. On this basis, the H9c2 cardiomyocytes were divided into blank, model, and high-dose(200 μg·mL~(-1)), medium-dose(100 μg·mL~(-1)), and low-dose(50 μg·mL~(-1)) groups of total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma. Cell hypertrophy and damage models were induced by treating cells with 400 μmol·L~(-1) ISO for 24 hours. The Incucyte live-cell analysis system was utilized to observe the status, size changes, and confluence of the cells in each group. Cell viability was detected by using the CCK-8 assay. Western blot analysis was employed to detect the expression of Ras-associated protein 7A(RAB7A), sequestosome 1(SQSTM1/p62), autophagy-related protein Beclin1, and microtubule-associated protein 1 light chain 3(LC3). Immunofluorescence was used to detect the expression level of the autophagy marker Beclin1 in H9c2 cells. The results demonstrated that compared with the blank group, the model group showed a significant reduction in cell viability(P<0.01) and a marked increase in cell hypertrophy, with an average cell length growth of 13.53%. Compared with the model group, the high-dose, medium-dose, and low-dose groups of total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma exhibited reduced hypertrophy, with respective growths of 6.89%, 8.30%, and 8.49% and a significant decrease in growth rates(P<0.01). Cell viability in the high-dose of total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma was also significantly increased(P<0.01). Western blot and immunofluorescence results indicated that compared with the blank group, the model group showed changes in Beclin1, RAB7A, and p62 expression, as well as the LC3Ⅱ/LC3Ⅰ ratio, although most changes were not statistically significant. In the groups treated with total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma, the expression of autophagy-related proteins Beclin1 and RAB7A and the LC3Ⅱ/LC3Ⅰ ratio were significantly increased(P<0.05), while p62 expression significantly decreased(P<0.05). These findings collectively suggested that pretreatment of cells with total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma significantly enhanced autophagy activity in cells. In summary, total saponins from Ginseng Radix et Rhizoma and Notoginseng Radix et Rhizoma inhibit ISO-induced hypertrophy and damage in H9c2 cells by promoting autophagy, demonstrating potential cardioprotective effects and providing new insights and scientific evidence for their preventive and therapeutic use in cardiovascular diseases.
Autophagy/drug effects*
;
Saponins/pharmacology*
;
Panax notoginseng/chemistry*
;
Panax/chemistry*
;
Animals
;
Rats
;
Cell Line
;
Drugs, Chinese Herbal/pharmacology*
;
Rhizome/chemistry*
;
Isoproterenol/adverse effects*
;
Myocytes, Cardiac/cytology*
;
Hypertrophy/drug therapy*
10.Efficacy and mechanism of Cistanches Herba extract in treating reproductive dysfunction in rats with kidney-Yang deficiency based on metabolomics.
Ze-Hui LI ; Pan-Yu XU ; Jia-Shan LI ; Li GUO ; Yuan LI ; Si-Qi LI ; Na LIN ; Ying XU
China Journal of Chinese Materia Medica 2025;50(7):1850-1860
This study investigates the reproductive protective effect and potential mechanism of Cistanches Herba extract(CHE) on a rat model of kidney-Yang deficiency induced by adenine. Rats were randomly divided into five groups: normal, model, low-dose CHE(0.6 g·kg~(-1)·d~(-1)), high-dose CHE(1.2 g·kg~(-1)·d~(-1)), and L-carnitine(100 mg·kg~(-1)·d~(-1)). The rats were administered adenine(200 mg·kg~(-1)·d~(-1)) by gavage for the first 14 days to induce kidney-Yang deficiency, while simultaneously receiving drug treatment. After 14 days, the modeling was discontinued, but drug treatment continued to 49 days. The content of components in CHE was analyzed by high-performance liquid chromatography. The adenine-induced kidney-Yang deficiency model was assessed through symptom characterization and measurement of testosterone(T) levels using an enzyme-linked immunosorbent assay kit. Pathological damage to the testis and epididymis was evaluated based on the wet weight and performing hematoxylin-eosin staining. Sperm density and motility were measured using computer-aided sperm analysis, and sperm viability was assessed using live/dead sperm staining kits, and sperm morphology was evaluated using eosin staining, thereby determining rat sperm quality. Metabolomics was used to analyze changes in serum metabolites, enrich related metabolic pathways, and explore the mechanism of CHE in improving reproductive function damage in rats with kidney-Yang deficiency syndrome. Compared to the normal group, the model group exhibited significant kidney-Yang deficiency symptoms, reduced T levels, decreased testicular and epididymal wet weights, and significant pathological damage to the testis and epididymis. The sperm density, motility, and viability decreased, with an increased rate of sperm abnormalities. In contrast, rats treated with CHE showed marked improvements in kidney-Yang deficiency symptoms, restored T levels, alleviated pathological damage to the testis and epididymis, and improved various sperm parameters. Metabolomics results revealed 286 differential metabolites between the normal and model groups(191 upregulated and 95 downregulated). Seventy-five differential metabolites were identified between the model and low-dose CHE groups(21 upregulated and 54 downregulated). A total of 24 common differential metabolites were identified across the three groups, with 22 of these metabolites exhibiting opposite regulation trends between the two comparison groups. These metabolites were primarily involved in linoleic acid metabolism, ether lipid metabolism, and pantothenic acid and coenzyme A biosynthesis, as well as metabolites including 13-hydroperoxylinoleic acid, lysophosphatidylcholine, and pantethine. CHE can improve kidney-Yang deficiency symptoms in rats, alleviate reproductive organ damage, and enhance sperm quality. The regulation of lipid metabolism may be a potential mechanism through which CHE improves reproductive function in rats with kidney-Yang deficiency. The potential bioactive compounds of CHE include echinacoside, verbascoside, salidroside, betaine, and cistanoside A.
Animals
;
Male
;
Rats
;
Yang Deficiency/physiopathology*
;
Metabolomics
;
Kidney/physiopathology*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
Cistanche/chemistry*
;
Kidney Diseases/metabolism*
;
Testis/metabolism*
;
Humans
;
Reproduction/drug effects*
;
Testosterone/blood*

Result Analysis
Print
Save
E-mail