1.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
2.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
3.Integrated Transcriptomic Landscape and Deep Learning Based Survival Prediction in Uterine Sarcomas
Yaolin SONG ; Guangqi LI ; Zhenqi ZHANG ; Yinbo LIU ; Huiqing JIA ; Chao ZHANG ; Jigang WANG ; Yanjiao HU ; Fengyun HAO ; Xianglan LIU ; Yunxia XIE ; Ding MA ; Ganghua LI ; Zaixian TAI ; Xiaoming XING
Cancer Research and Treatment 2025;57(1):250-266
Purpose:
The genomic characteristics of uterine sarcomas have not been fully elucidated. This study aimed to explore the genomic landscape of the uterine sarcomas (USs).
Materials and Methods:
Comprehensive genomic analysis through RNA-sequencing was conducted. Gene fusion, differentially expressed genes (DEGs), signaling pathway enrichment, immune cell infiltration, and prognosis were analyzed. A deep learning model was constructed to predict the survival of US patients.
Results:
A total of 71 US samples were examined, including 47 endometrial stromal sarcomas (ESS), 18 uterine leiomyosarcomas (uLMS), three adenosarcomas, two carcinosarcomas, and one uterine tumor resembling an ovarian sex-cord tumor. ESS (including high-grade ESS [HGESS] and low-grade ESS [LGESS]) and uLMS showed distinct gene fusion signatures; a novel gene fusion site, MRPS18A–PDC-AS1 could be a potential diagnostic marker for the pathology differential diagnosis of uLMS and ESS; 797 and 477 uterine sarcoma DEGs (uDEGs) were identified in the ESS vs. uLMS and HGESS vs. LGESS groups, respectively. The uDEGs were enriched in multiple pathways. Fifteen genes including LAMB4 were confirmed with prognostic value in USs; immune infiltration analysis revealed the prognositic value of myeloid dendritic cells, plasmacytoid dendritic cells, natural killer cells, macrophage M1, monocytes and hematopoietic stem cells in USs; the deep learning model named Max-Mean Non-Local multi-instance learning (MMN-MIL) showed satisfactory performance in predicting the survival of US patients, with the area under the receiver operating curve curve reached 0.909 and accuracy achieved 0.804.
Conclusion
USs harbored distinct gene fusion characteristics and gene expression features between HGESS, LGESS, and uLMS. The MMN-MIL model could effectively predict the survival of US patients.
4.Clinical efficacy and safety of vortioxetine as an adjuvant drug for patients with bipolar depression.
Chunxiao DAI ; Yaoyang FU ; Xuanwei LI ; Meihua LIN ; Yinbo LI ; Xiao LI ; Keke HUANG ; Chengcheng ZHOU ; Jian XIE ; Qingwei ZHAO ; Shaohua HU
Journal of Zhejiang University. Science. B 2025;26(1):26-38
OBJECTIVES:
Whether vortioxetine has a utility as an adjuvant drug in the treatment of bipolar depression remains controversial. This study aimed to validate the efficacy and safety of vortioxetine in bipolar depression.
METHODS:
Patients with bipolar Ⅱ depression were enrolled in this prospective, two-center, randomized, 12-week pilot trial. The main indicator for assessing treatment effectiveness was a Montgomery-Asberg Depression Rating Scale (MADRS) of ≥50%. All eligible patients initially received four weeks of lurasidone monotherapy. Patients who responded well continued to receive this kind of monotherapy. However, no-response patients were randomly assigned to either valproate or vortioxetine treatment for eight weeks. By comprehensively comparing the results of MADRS over a period of 4‒12 weeks, a systematic analysis was conducted to determine whether vortioxetine could be used as an adjuvant drug for treating bipolar depression.
RESULTS:
Thirty-seven patients responded to lurasidone monotherapy, and 60 patients were randomly assigned to the valproate or vortioxetine group for eight weeks. After two weeks of combined valproate or vortioxetine treatment, the MADRS score in the vortioxetine group was significantly lower than that in the valproate group. There was no difference in the MADRS scores between the two groups at 8 and 12 weeks. The incidence of side effects did not significantly differ between the valproate and vortioxetine groups. Importantly, three patients in the vortioxetine group appeared to switch to mania or hypomania.
CONCLUSIONS
This study suggested that lurasidone combination with vortioxetine might have potential benefits to bipolar II depression in the early stage, while disease progression should be monitored closely for the risk of switching to mania.
Humans
;
Bipolar Disorder/drug therapy*
;
Vortioxetine/therapeutic use*
;
Male
;
Female
;
Middle Aged
;
Adult
;
Valproic Acid/administration & dosage*
;
Lurasidone Hydrochloride/administration & dosage*
;
Prospective Studies
;
Treatment Outcome
;
Pilot Projects
;
Drug Therapy, Combination
;
Sulfides/therapeutic use*
;
Antidepressive Agents/therapeutic use*
5.Inhibition of Ferroptosis by Mesenchymal Stem Cell-Derived Exosomes in Acute Spinal Cord Injury: Role of Nrf2/GCH1/BH4 Axis
Yixin CHEN ; Bingfa LI ; Jing QUAN ; Zhe LI ; Yan LI ; Yinbo TANG
Neurospine 2024;21(2):642-655
Objective:
The therapeutic benefits of exosomes obtained from mesenchymal stem cells (MSCs) in acute spinal cord injury (SCI) have been demonstrated in recent years, but the precise mechanisms remain unknown. In this study, the efficacy and mechanisms of MSC-derived exosomes (MSC-Exo) in acute SCI were investigated.
Methods:
By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigated the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI rats.
Results:
The results revealed that MSC-Exo effectively inhibited the production of ferrous iron, lipid peroxidation products malonaldehyde and reactive oxygen species, and ferroptosis-promoting factor prostaglandin-endoperoxide synthase 2. Concurrently, they upregulated ferroptosis suppressors FTH-1 (ferritin heavy chain 1), SLC7A11 (solute carrier family 7 member 11), FSP1 (ferroptosis suppressor protein 1), and GPX4 (glutathione peroxidase 4), contributing to enhanced neurological recovery in SCI rats. Further analysis showed the Nrf2/GTP/BH4 signaling pathway’s critical role in suppressing ferroptosis. Additionally, MSC-Exo was found to inhibit lipopolysaccharide-induced ferroptosis in BV2 cells and SCI rats by activating the Nrf2/GCH1/BH4 axis.
Conclusion
In summary, the study demonstrates that MSC-Exo mitigates microglial cell ferroptosis via the Nrf2/GCH1/BH4 axis, showing potential for preserving and restoring neurological function post-SCI.
6.Inhibition of Ferroptosis by Mesenchymal Stem Cell-Derived Exosomes in Acute Spinal Cord Injury: Role of Nrf2/GCH1/BH4 Axis
Yixin CHEN ; Bingfa LI ; Jing QUAN ; Zhe LI ; Yan LI ; Yinbo TANG
Neurospine 2024;21(2):642-655
Objective:
The therapeutic benefits of exosomes obtained from mesenchymal stem cells (MSCs) in acute spinal cord injury (SCI) have been demonstrated in recent years, but the precise mechanisms remain unknown. In this study, the efficacy and mechanisms of MSC-derived exosomes (MSC-Exo) in acute SCI were investigated.
Methods:
By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigated the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI rats.
Results:
The results revealed that MSC-Exo effectively inhibited the production of ferrous iron, lipid peroxidation products malonaldehyde and reactive oxygen species, and ferroptosis-promoting factor prostaglandin-endoperoxide synthase 2. Concurrently, they upregulated ferroptosis suppressors FTH-1 (ferritin heavy chain 1), SLC7A11 (solute carrier family 7 member 11), FSP1 (ferroptosis suppressor protein 1), and GPX4 (glutathione peroxidase 4), contributing to enhanced neurological recovery in SCI rats. Further analysis showed the Nrf2/GTP/BH4 signaling pathway’s critical role in suppressing ferroptosis. Additionally, MSC-Exo was found to inhibit lipopolysaccharide-induced ferroptosis in BV2 cells and SCI rats by activating the Nrf2/GCH1/BH4 axis.
Conclusion
In summary, the study demonstrates that MSC-Exo mitigates microglial cell ferroptosis via the Nrf2/GCH1/BH4 axis, showing potential for preserving and restoring neurological function post-SCI.
7.Inhibition of Ferroptosis by Mesenchymal Stem Cell-Derived Exosomes in Acute Spinal Cord Injury: Role of Nrf2/GCH1/BH4 Axis
Yixin CHEN ; Bingfa LI ; Jing QUAN ; Zhe LI ; Yan LI ; Yinbo TANG
Neurospine 2024;21(2):642-655
Objective:
The therapeutic benefits of exosomes obtained from mesenchymal stem cells (MSCs) in acute spinal cord injury (SCI) have been demonstrated in recent years, but the precise mechanisms remain unknown. In this study, the efficacy and mechanisms of MSC-derived exosomes (MSC-Exo) in acute SCI were investigated.
Methods:
By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigated the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI rats.
Results:
The results revealed that MSC-Exo effectively inhibited the production of ferrous iron, lipid peroxidation products malonaldehyde and reactive oxygen species, and ferroptosis-promoting factor prostaglandin-endoperoxide synthase 2. Concurrently, they upregulated ferroptosis suppressors FTH-1 (ferritin heavy chain 1), SLC7A11 (solute carrier family 7 member 11), FSP1 (ferroptosis suppressor protein 1), and GPX4 (glutathione peroxidase 4), contributing to enhanced neurological recovery in SCI rats. Further analysis showed the Nrf2/GTP/BH4 signaling pathway’s critical role in suppressing ferroptosis. Additionally, MSC-Exo was found to inhibit lipopolysaccharide-induced ferroptosis in BV2 cells and SCI rats by activating the Nrf2/GCH1/BH4 axis.
Conclusion
In summary, the study demonstrates that MSC-Exo mitigates microglial cell ferroptosis via the Nrf2/GCH1/BH4 axis, showing potential for preserving and restoring neurological function post-SCI.
8.Inhibition of Ferroptosis by Mesenchymal Stem Cell-Derived Exosomes in Acute Spinal Cord Injury: Role of Nrf2/GCH1/BH4 Axis
Yixin CHEN ; Bingfa LI ; Jing QUAN ; Zhe LI ; Yan LI ; Yinbo TANG
Neurospine 2024;21(2):642-655
Objective:
The therapeutic benefits of exosomes obtained from mesenchymal stem cells (MSCs) in acute spinal cord injury (SCI) have been demonstrated in recent years, but the precise mechanisms remain unknown. In this study, the efficacy and mechanisms of MSC-derived exosomes (MSC-Exo) in acute SCI were investigated.
Methods:
By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigated the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI rats.
Results:
The results revealed that MSC-Exo effectively inhibited the production of ferrous iron, lipid peroxidation products malonaldehyde and reactive oxygen species, and ferroptosis-promoting factor prostaglandin-endoperoxide synthase 2. Concurrently, they upregulated ferroptosis suppressors FTH-1 (ferritin heavy chain 1), SLC7A11 (solute carrier family 7 member 11), FSP1 (ferroptosis suppressor protein 1), and GPX4 (glutathione peroxidase 4), contributing to enhanced neurological recovery in SCI rats. Further analysis showed the Nrf2/GTP/BH4 signaling pathway’s critical role in suppressing ferroptosis. Additionally, MSC-Exo was found to inhibit lipopolysaccharide-induced ferroptosis in BV2 cells and SCI rats by activating the Nrf2/GCH1/BH4 axis.
Conclusion
In summary, the study demonstrates that MSC-Exo mitigates microglial cell ferroptosis via the Nrf2/GCH1/BH4 axis, showing potential for preserving and restoring neurological function post-SCI.
9.Inhibition of Ferroptosis by Mesenchymal Stem Cell-Derived Exosomes in Acute Spinal Cord Injury: Role of Nrf2/GCH1/BH4 Axis
Yixin CHEN ; Bingfa LI ; Jing QUAN ; Zhe LI ; Yan LI ; Yinbo TANG
Neurospine 2024;21(2):642-655
Objective:
The therapeutic benefits of exosomes obtained from mesenchymal stem cells (MSCs) in acute spinal cord injury (SCI) have been demonstrated in recent years, but the precise mechanisms remain unknown. In this study, the efficacy and mechanisms of MSC-derived exosomes (MSC-Exo) in acute SCI were investigated.
Methods:
By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigated the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI rats.
Results:
The results revealed that MSC-Exo effectively inhibited the production of ferrous iron, lipid peroxidation products malonaldehyde and reactive oxygen species, and ferroptosis-promoting factor prostaglandin-endoperoxide synthase 2. Concurrently, they upregulated ferroptosis suppressors FTH-1 (ferritin heavy chain 1), SLC7A11 (solute carrier family 7 member 11), FSP1 (ferroptosis suppressor protein 1), and GPX4 (glutathione peroxidase 4), contributing to enhanced neurological recovery in SCI rats. Further analysis showed the Nrf2/GTP/BH4 signaling pathway’s critical role in suppressing ferroptosis. Additionally, MSC-Exo was found to inhibit lipopolysaccharide-induced ferroptosis in BV2 cells and SCI rats by activating the Nrf2/GCH1/BH4 axis.
Conclusion
In summary, the study demonstrates that MSC-Exo mitigates microglial cell ferroptosis via the Nrf2/GCH1/BH4 axis, showing potential for preserving and restoring neurological function post-SCI.
10.Preliminary study of stereotactic cardiac radioablation in radiotherapy of ventricular arrhythmia
Jing LI ; Qingyong CHEN ; Guangjun LI ; Yan LI ; Yingjie ZHANG ; Changhu LI ; Long BAI ; Renming ZHONG ; Yinbo HE ; Sen BAI ; Qing YANG ; Feng XU
Chinese Journal of Radiation Oncology 2022;31(3):260-265
Objective:To introduce the stereotactic cardiac radioablation (SCRA) based on the stereotactic body radiotherapy (SBRT), and comprehensively evaluate the new approach by short-term effectiveness and safety.Methods:Patients with ventricular arrhythmia (VA) were evaluated and included in this clinical trial, who were immobilized by vacuum bag and performed simulation with 4-dimensional computed tomography (4DCT). In this study, the planning target volume (PTV) was set as the target to design a SBRT plan using volumetric modulated arc therapy (VMAT), which was evaluated by dose parameters such as R 50%, homogeneity index and conformity index, etc. The results of Holter and echocardiography were monitored during the follow-up and compared with the data before treatment. Results:Three subjects with ventricular tachycardia (VT) and one with premature ventricular contraction (PVC) received the same prescription of 25 Gy in a single fraction. The average volume of PTV was 71.4 cm 3(60.3-89.4 cm 3). The average time of beam delivery was 12.0 min (4.5-21.0 min). And the short-term follow-up lasted for an average of 18 weeks (14-25 weeks), which showed significant decrease in both VT and PVC load without complications. Conclusion:This study reports the implementation method of SCRA and proves its short-term effectiveness and safety, but the effects and standards of the key radiotherapy techniques still need to be explored.

Result Analysis
Print
Save
E-mail