1.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
2.Arsenic trioxide preconditioning attenuates hepatic ischemia- reperfusion injury in mice: Role of ERK/AKT and autophagy.
Chaoqun WANG ; Hongjun YU ; Shounan LU ; Shanjia KE ; Yanan XU ; Zhigang FENG ; Baolin QIAN ; Miaoyu BAI ; Bing YIN ; Xinglong LI ; Yongliang HUA ; Zhongyu LI ; Dong CHEN ; Bangliang CHEN ; Yongzhi ZHOU ; Shangha PAN ; Yao FU ; Hongchi JIANG ; Dawei WANG ; Yong MA
Chinese Medical Journal 2025;138(22):2993-3003
BACKGROUND:
Arsenic trioxide (ATO) is indicated as a broad-spectrum medicine for a variety of diseases, including cancer and cardiac disease. While the role of ATO in hepatic ischemia/reperfusion injury (HIRI) has not been reported. Thus, the purpose of this study was to identify the effects of ATO on HIRI.
METHODS:
In the present study, we established a 70% hepatic warm I/R injury and partial hepatectomy (30% resection) animal models in vivo and hepatocytes anoxia/reoxygenation (A/R) models in vitro with ATO pretreatment and further assessed liver function by histopathologic changes, enzyme-linked immunosorbent assay, cell counting kit-8, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Small interfering RNA (siRNA) for extracellular signal-regulated kinase (ERK) 1/2 was transfected to evaluate the role of ERK1/2 pathway during HIRI, followed by ATO pretreatment. The dynamic process of autophagic flux and numbers of autophagosomes were detected by green fluorescent protein-monomeric red fluorescent protein-LC3 (GFP-mRFP-LC3) staining and transmission electron microscopy.
RESULTS:
A low dose of ATO (0.75 μmol/L in vitro and 1 mg/kg in vivo ) significantly reduced tissue necrosis, inflammatory infiltration, and hepatocyte apoptosis during the process of hepatic I/R. Meanwhile, ATO obviously promoted the ability of cell proliferation and liver regeneration. Mechanistically, in vitro studies have shown that nontoxic concentrations of ATO can activate both ERK and phosphoinositide 3-kinase-serine/threonine kinase (PI3K-AKT) pathways and further induce autophagy. The hepatoprotective mechanism of ATO, at least in part, relies on the effects of ATO on the activation of autophagy, which is ERK-dependent.
CONCLUSION
Low, non-toxic doses of ATO can activate ERK/PI3K-AKT pathways and induce ERK-dependent autophagy in hepatocytes, protecting liver against I/R injury and accelerating hepatocyte regeneration after partial hepatectomy.
Animals
;
Arsenic Trioxide
;
Autophagy/physiology*
;
Reperfusion Injury/prevention & control*
;
Mice
;
Male
;
Proto-Oncogene Proteins c-akt/physiology*
;
Arsenicals/therapeutic use*
;
Oxides/therapeutic use*
;
Liver/metabolism*
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Mice, Inbred C57BL
3.Preliminary application of human-computer interaction CT imaging AI recognition and positioning technology in the treatment of type C1 distal radius fractures.
Yong-Zhong CHENG ; Xiao-Dong YIN ; Fei LIU ; Xin-Heng DENG ; Chao-Lu WANG ; Shu-Ke CUI ; Yong-Yao LI ; Wei YAN
China Journal of Orthopaedics and Traumatology 2025;38(1):31-40
OBJECTIVE:
To explore the accuracy of human-computer interaction software in identifying and locating type C1 distal radius fractures.
METHODS:
Based on relevant inclusion and exclusion criteria, 14 cases of type C1 distal radius fractures between September 2023 and March 2024 were retrospectively analyzed, comprising 3 males and 11 females(aged from 27 to 82 years). The data were assigned randomized identifiers. A senior orthopedic physician reviewed the films and measured the ulnar deviation angle, radial height, palmar inclination angle, intra-articular step, and intra-articular gap for each case on the hospital's imaging system. Based on the reduction standard for distal radius fractures, cases were divided into reduction group and non-reduction group. Then, the data were sequentially imported into a human-computer interaction intelligent software, where a junior orthopedic physician analyzed the same radiological parameters, categorized cases, and measured fracture details. The categorization results from the software were consistent with manual classifications (6 reduction cases and 8 non-reduction cases). For non-reduction cases, the software performed further analyses, including bone segmentation and fracture recognition, generating 8 diagnostic reports containing fracture recognition information. For the 6 reduction cases, the senior and junior orthopedic physicians independently analyzed the data on the hospital's imaging system and the AI software, respectively. Bone segments requiring reduction were identified, verified by two senior physicians, and measured for displacement and rotation along the X (inward and outward), Z (front and back), and Y (up and down) axes. The AI software generated comprehensive diagnostic reports for these cases, which included all measurements and fracture recognition details.
RESULTS:
Both the manual and AI software methods consistently categorized the 14 cases into 6 reduction and 8 non-reduction groups, with identical data distributions. A paired sample t-test revealed no statistically significant differences (P>0.05) between the manual and software-based measurements for ulnar deviation angle, radial ulnar bone height, palmar inclination angle, intra-articular step, and joint space. In fracture recognition, the AI software correctly identified 10 C-type fractures and 4 B-type fractures. For the 6 reduction cases, a total of 24 bone fragments were analyzed across both methods. After verification, it was found that the bone fragments identified by the two methods were consistent. A paired sample t-tests revealed that the identified bone fragments and measured displacement and rotation angles along the X, Y, and Z axes were consistent between the two methods. No statistically significant differences(P>0.05) were found between manual and software measurements for these parameters.
CONCLUSION
Human-computer interaction software employing AI technology demonstrated comparable accuracy to manual measurement in identifying and locating type C1 distal radius fractures on CT imaging.
Humans
;
Male
;
Female
;
Radius Fractures/surgery*
;
Middle Aged
;
Adult
;
Aged
;
Aged, 80 and over
;
Tomography, X-Ray Computed/methods*
;
Retrospective Studies
;
Software
;
Wrist Fractures
4.Complications among patients undergoing orthopedic surgery after infection with the SARS-CoV-2 Omicron strain and a preliminary nomogram for predicting patient outcomes.
Liang ZHANG ; Wen-Long GOU ; Ke-Yu LUO ; Jun ZHU ; Yi-Bo GAN ; Xiang YIN ; Jun-Gang PU ; Huai-Jian JIN ; Xian-Qing ZHANG ; Wan-Fei WU ; Zi-Ming WANG ; Yao-Yao LIU ; Yang LI ; Peng LIU
Chinese Journal of Traumatology 2025;28(6):445-453
PURPOSE:
The rate of complications among patients undergoing surgery has increased due to infection with SARS-CoV-2 and other variants of concern. However, Omicron has shown decreased pathogenicity, raising questions about the risk of postoperative complications among patients who are infected with this variant. This study aimed to investigate complications and related factors among patients with recent Omicron infection prior to undergoing orthopedic surgery.
METHODS:
A historical control study was conducted. Data were collected from all patients who underwent surgery during 2 distinct periods: (1) between Dec 12, 2022 and Jan 31, 2023 (COVID-19 positive group), (2) between Dec 12, 2021 and Jan 31, 2022 (COVID-19 negative control group). The patients were at least 18 years old. Patients who received conservative treatment after admission or had high-risk diseases or special circumstances (use of anticoagulants before surgery) were excluded from the study. The study outcomes were the total complication rate and related factors. Binary logistic regression analysis was used to identify related factors, and odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the impact of COVID-19 infection on complications.
RESULTS:
In the analysis, a total of 847 patients who underwent surgery were included, with 275 of these patients testing positive for COVID-19 and 572 testing negative. The COVID-19-positive group had a significantly higher rate of total complications (11.27%) than the control group (4.90%, p < 0.001). After adjusting for relevant factors, the OR was 3.08 (95% CI: 1.45-6.53). Patients who were diagnosed with COVID-19 at 3-4 weeks (OR = 0.20 (95% CI: 0.06-0.59), p = 0.005), 5-6 weeks (OR = 0.16 (95% CI: 0.04-0.59), p = 0.010), or ≥7 weeks (OR = 0.26 (95% CI: 0.06-1.02), p = 0.069) prior to surgery had a lower risk of complications than those who were diagnosed at 0-2 weeks prior to surgery. Seven factors (age, indications for surgery, time of operation, time of COVID-19 diagnosis prior to surgery, C-reactive protein levels, alanine transaminase levels, and aspartate aminotransferase levels) were found to be associated with complications; thus, these factors were used to create a nomogram.
CONCLUSION
Omicron continues to be a significant factor in the incidence of postoperative complications among patients undergoing orthopedic surgery. By identifying the factors associated with these complications, we can determine the optimal surgical timing, provide more accurate prognostic information, and offer appropriate consultation for orthopedic surgery patients who have been infected with Omicron.
Humans
;
COVID-19/complications*
;
Male
;
Female
;
Middle Aged
;
Postoperative Complications/epidemiology*
;
SARS-CoV-2
;
Orthopedic Procedures/adverse effects*
;
Aged
;
Nomograms
;
Adult
;
Retrospective Studies
;
Risk Factors
5.Type II Leydig cell hypoplasia caused by LHCGR gene mutation: a case report.
Ke-Xin JIN ; Zhe SU ; Yan-Hua JIAO ; Li-Li PAN ; Xian-Ping JIANG ; Jian-Chun YIN ; Jia-Qiang LI
Chinese Journal of Contemporary Pediatrics 2025;27(2):225-228
The patient, assigned female at birth and aged 1 year and 7 months, presented with clinical manifestations of 46,XY disorders of sex development. The external genitalia exhibited a severely undermasculinized phenotype. Laboratory tests and gonadal biopsy indicated poor Leydig cell function and good Sertoli cell function. Genetic testing revealed compound heterozygous mutations of c.867-2A>C and c.547G>A (p.G183R) in the LHCGR gene. The patient was ultimately diagnosed with type II Leydig cell hypoplasia. Type II Leydig cell hypoplasia presents a broad spectrum of clinical phenotypes, characterized by a lack of parallel function between Leydig cells and Sertoli cells, and significant individual variability in spermatogenesis and gender assignment. This condition should be considered when there is poor Leydig cell function but good development of Wolffian duct derivatives.
Female
;
Humans
;
Infant
;
Disorder of Sex Development, 46,XY/genetics*
;
Leydig Cells/pathology*
;
Mutation
;
Receptors, LH/genetics*
;
Testis/abnormalities*
6.Stir-fried Semen Armeniacae Amarum Suppresses Aristolochic Acid I-Induced Nephrotoxicity and DNA Adducts.
Cheng-Xian LI ; Xiao-He XIAO ; Xin-Yu LI ; Da-Ke XIAO ; Yin-Kang WANG ; Xian-Ling WANG ; Ping ZHANG ; Yu-Rong LI ; Ming NIU ; Zhao-Fang BAI
Chinese journal of integrative medicine 2025;31(2):142-152
OBJECTIVE:
To investigate the protective effects of stir-fried Semen Armeniacae Amarum (SAA) against aristolochic acid I (AAI)-induced nephrotoxicity and DNA adducts and elucidate the underlying mechanism involved for ensuring the safe use of Asari Radix et Rhizoma.
METHODS:
In vitro, HEK293T cells overexpressing Flag-tagged multidrug resistance-associated protein 3 (MRP3) were constructed by Lentiviral transduction, and inhibitory effect of top 10 common pairs of medicinal herbs with Asari Radix et Rhizoma in clinic on MRP3 activity was verified using a self-constructed fluorescence screening system. The mRNA, protein expressions, and enzyme activity levels of NAD(P)H quinone dehydrogenase 1 (NQO1) and cytochrome P450 1A2 (CYP1A2) were measured in differentiated HepaRG cells. Hepatocyte toxicity after inhibition of AAI metabolite transport was detected using cell counting kit-8 assay. In vivo, C57BL/6 mice were randomly divided into 5 groups according to a random number table, including: control (1% sodium bicarbonate), AAI (10 mg/kg), stir-fried SAA (1.75 g/kg) and AAI + stir-fried SAA (1.75 and 8.75 g/kg) groups, 6 mice in each group. After 7 days of continuous gavage administration, liver and kidney damages were assessed, and the protein expressions and enzyme activity of liver metabolic enzymes NQO1 and CYP1A2 were determined simultaneously.
RESULTS:
In vivo, combination of 1.75 g/kg SAA and 10 mg/kg AAI suppressed AAI-induced nephrotoxicity and reduced dA-ALI formation by 26.7%, and these detoxification effects in a dose-dependent manner (P<0.01). Mechanistically, SAA inhibited MRP3 transport in vitro, downregulated NQO1 expression in vivo, increased CYP1A2 expression and enzymatic activity in vitro and in vivo, respectively (P<0.05 or P<0.01). Notably, SAA also reduced AAI-induced hepatotoxicity throughout the detoxification process, as indicated by a 41.3% reduction in the number of liver adducts (P<0.01).
CONCLUSIONS
Stir-fried SAA is a novel drug candidate for the suppression of AAI-induced liver and kidney damages. The protective mechanism may be closely related to the regulation of transporters and metabolic enzymes.
Aristolochic Acids/toxicity*
;
Animals
;
Humans
;
NAD(P)H Dehydrogenase (Quinone)/genetics*
;
HEK293 Cells
;
Kidney/pathology*
;
Cytochrome P-450 CYP1A2/genetics*
;
Mice, Inbred C57BL
;
DNA Adducts/drug effects*
;
Male
;
Kidney Diseases/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Prunus armeniaca
;
Plant Extracts
7.Brain endothelial HIF-1α exacerbates diabetes-associated cognitive impairment by accelerating glycolysis-driven lactate production.
Jicong CHEN ; Ruohui LIN ; Cuihua JIANG ; Fang CHEN ; Wei LI ; Lei WANG ; Ke PAN ; Jian ZHANG ; Zhiqi YIN ; Yaping HUANG
Acta Pharmaceutica Sinica B 2025;15(11):5772-5788
Type 2 diabetes (T2D) is an independent risk factor for cognitive impairment. The dysregulation of hypoxia inducible factor (HIF) signaling in T2D patients results in impaired adaptive responses to hypoxia, thereby accelerating the progression of complications. However, limited knowledge is available regarding its precise function in diabetes-associated cognitive impairment (DACI). Here, elevated HIF-1α levels were observed in brain endothelial cells (ECs) of db/db mice. Functionally, brain ECs-specific knockdown of H if1 a significantly ameliorated T2D-induced memory loss and neuronal damage. Glycolysis in brain ECs was inhibited in this process, as indicated by RNA-seq, leading to decreased hippocampal lactate production through reduced LDHA expression. Notably, T2D patients showed increased cerebrospinal fluid lactate levels, which were strongly associated with their cognitive dysfunction. Intrahippocampal injection of lactate accelerated cognitive dysfunction and impaired adult hippocampal neurogenesis (AHN) in db/db mice. Conversely, reducing hippocampal lactate levels through the intrahippocampal injection of oxamate delayed the onset of memory deficits. Furthermore, asiatic acid was discovered to protect db/db mice from cognitive impairment by decreasing brain endothelial HIF-1α expression and subsequently reducing hippocampal lactate-induced AHN damage. Overall, this study elucidates the inhibiting role played by endothelial HIF-1α-driven lactate in AHN and highlights a potential tactic of targeting HIF-1α in brain ECs for treating cognitive impairment.
8.Expression of miR-142-5p,SOCS1 mRNA in Ankle Joint Tissue Spondylitis Model Mice and PBMC of Clinical Patients and Their Immune Function Analysis
Mingguang YAN ; Xiao FANG ; Wenxuan LI ; Ke WANG ; Weibing YIN
Journal of Modern Laboratory Medicine 2024;39(3):29-36
Objective To explore the expression of mocro RNA(miR)-142-5p and suppressor of cytokine signaling 1(SOCS1)mRNA in peripheral blood mononuclear cells(PBMC)of mice and clinical patients with ankylosing spondylitis(AS)and their impact on immune function.Methods The mRNA levels of miR-142-5p and SOCS1 in PBMC of 30 patients with AS(Patient group)and 30 healthy controls(Health group)treated in the First People's Hospital of Shangqiu from January 2022 to March 2023 were measured by quantitative real time PCR(qRT-PCR).AS mice models were induced by bovine proteoglycan combined with complete Freund's adjuvant,and these mice were divided into control group,model group,NC group and antagomir group.Normal saline was injected into tail vein in control group and model group,and NC-antagomir and miR-142-5p-antagomir were injected into tail vein in NC group and antagomir group,respectively.After 2 weeks of treatment,the arthritis symptom scores of mice in each group were evaluated.The morphology of ankle joint was evaluated by hematoxylin eosin(HE)staining.The levels of Th1 cytokine interferon-γ(IFN-γ),Th2 cytokine interleukin-4(IL-4),Th17 cytokine interleukin-17(IL-17)and Treg cytokine forkhead box protein P3(FOXP3)in PBMC of mice were detected by ELISA method.The mRNA and protein expression of miR-142-5p,SOCS1,IFN-γ,IL-4,IL-17 and FOXP3 in PBMC and ankle joints were detected by qRT-PCR and Western blot.Results Compared with Health group,the level of miR-142-5p in PBMC of patient group was increased(1.00±0.21 vs 3.03±0.99,t=10.997,P<0.001),while the level of SOCS1 mRNA was decreased(1.00±0.18 vs 0.41±0.09,t=15.956,P<0.001).Compared with control group,miR-142-5p level(1.00±0.04 vs 4.00±0.52)and the mRNA and protein levels of IFN-γ and IL-17 in ankle joint tissue of model group were increased,while the mRNA and protein levels of SOCS1,IL-4 and FOXP3 were decreased,with significant differences(t=23.356,31.420,48.056,47.224,38.035,29.007,54.183,28.123,55.155,26.758,45.346,all P<0.05).The arthritis symptom score was increased(7.83±0.94 vs 0.00±0.00,t=22.212,P<0.05),and the ankle joint structure was damaged.Serum IFN-γ,IL-17 levels,IFN-γ/IL-4 ratio(0.81±0.08 vs 2.08±0.33)and IL-17/FOXP3 ratio(0.41±0.03 vs 1.27±0.10)were increased,and the differences were statistically significant(t=15.382,35.779,8.934,35.130,all P<0.05).Compared with NC group,miR-142-5p level(3.89±0.33 vs 1.47±0.10),the mRNA and protein levels of IFN-γ and IL-17 in ankle joint tissue of antagomir group were decreased,while the mRNA and protein levels of SOCS1,IL-4 and FOXP3 were increased,and the differences were statistically significant(t=18.846,22.969,43.454,32.617,23.259,20.881,41.832,11.994,32.977,15.190,35.834,all P<0.05).The arthritis symptom score was decreased(7.42±1.24 vs 2.75±0.75,t=13.233,P<0.05),and the shape of the ankle joint of the rats was improved.Serum IFN-γ,IL-17 levels,IFN-γ/IL-4 ratio(1.22±0.11 vs 1.91±0.19)and IL-17/FOXP3 ratio(0.69±0.05 vs 1.23±0.12)were decreased,and the differences were statistically significant(t=8.688,22.972,3.785,22.007,all P<0.05).Conclusion MiR-142-5p was highly expressed in AS.Down-regulation of miR-142-5p using antagonists may reduce Th1/Th2 ratio and Th17/Treg ratio through up-regulation of SOCS1,there by improving the immune balance of AS mice and inhibiting the progression of AS.
9.Development and external validation of a quantitative diagnostic model for malignant gastric lesions in clinical opportunistic screening: A multicenter real-world study
Hongchen ZHENG ; Zhen LIU ; Yun CHEN ; Ping JI ; Zhengyu FANG ; Yujie HE ; Chuanhai GUO ; Ping XIAO ; Chengwen WANG ; Weihua YIN ; Fenglei LI ; Xiujian CHEN ; Mengfei LIU ; Yaqi PAN ; Fangfang LIU ; Ying LIU ; Zhonghu HE ; Yang KE
Chinese Medical Journal 2024;137(19):2343-2350
Background::Clinical opportunistic screening is a cost-effective cancer screening modality. This study aimed to establish an easy-to-use diagnostic model serving as a risk stratification tool for identification of individuals with malignant gastric lesions for opportunistic screening.Methods::We developed a questionnaire-based diagnostic model using a joint dataset including two clinical cohorts from northern and southern China. The cohorts consisted of 17,360 outpatients who had undergone upper gastrointestinal endoscopic examination in endoscopic clinics. The final model was derived based on unconditional logistic regression, and predictors were selected according to the Akaike information criterion. External validation was carried out with 32,614 participants from a community-based randomized controlled trial.Results::This questionnaire-based diagnostic model for malignant gastric lesions had eight predictors, including advanced age, male gender, family history of gastric cancer, low body mass index, unexplained weight loss, consumption of leftover food, consumption of preserved food, and epigastric pain. This model showed high discriminative power in the development set with an area under the receiver operating characteristic curve (AUC) of 0.791 (95% confidence interval [CI]: 0.750–0.831). External validation of the model in the general population generated an AUC of 0.696 (95% CI: 0.570–0.822). This model showed an ideal ability for enriching prevalent malignant gastric lesions when applied to various scenarios.Conclusion::This easy-to-use questionnaire-based model for diagnosis of prevalent malignant gastric lesions may serve as an effective prescreening tool in clinical opportunistic screening for gastric cancer.
10.Clinical experience of extraperitoneal laparoscopic radical cystectomy in 340 cases
Ke WANG ; Zhaofeng LI ; Zongliang ZHANG ; Kai ZHAO ; Xinbao YIN ; Guanqun ZHU ; Zhenlin WANG ; Han YANG ; Xueyu LI ; Xuechuan YAN ; Qinglei WANG ; Zaiqing JIANG
Journal of Modern Urology 2024;29(9):762-765
Radical cystectomy combined with pelvic lymph node dissection is the standard procedure for the treatment of muscle invasive bladder cancer and complex non-muscle invasive bladder cancer.Our department has routinely carried out laparoscopic radical cystectomy(ELRC)through the extraperitoneal approach in 340 cases.This article summarizes the establishment of the peritoneal space,the expansion of the peritoneal space,the operation steps of bladder resection and lymph node dissection through the peritoneal channel,and how to shorten the operation time and reduce the difficulty of the operation.During the surgery,the bladder is removed periperitoneally without destroying the peritoneum to preserve the functions of peritoneum support,secretion,protection and lubrication,which has little impact on the abdominal organs,reduces the incidence of complications,and provides favorable conditions for subsequent treatment.

Result Analysis
Print
Save
E-mail