1.Xuefu Zhuyutang in Malignant Tumor Disease: A Review
Jiaqi JI ; Xiaoqing HU ; Yihan ZHAO ; Xuhang SUN ; Dandan WEI ; Junwen PEI ; Shiqing JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):321-330
Cancer has become a significant global public health issue, severely impacting public health and societal development. Despite advances in tumor treatment methods in recent years and a gradual decline in cancer mortality rates, drug-related adverse reactions and drug resistance remain substantial challenges. Traditional Chinese medicine (TCM) has demonstrated significant clinical efficacy in cancer treatment and small side effects, making it widely applied in the field of oncology. Xuefu Zhuyutang, derived from Yilin Gaicuo, is known for its abilities to invigorate blood circulation, dispel blood stasis, promote Qi flow, and alleviate pain. It was specifically formulated by the esteemed WANG Qingren of the Qing dynasty for the "blood stasis syndrome in the blood mansion" and is commonly used to treat Qi stagnation and blood stasis syndrome. Clinical studies have shown that Xuefu Zhuyutang, when combined with conventional Western medications, produces significant effects in the treatment of malignant tumors such as liver cancer, lung cancer, and cervical cancer. It substantially reduces the incidence of adverse reactions following Western treatments, including radiation esophagitis, radiation encephalopathy, radiation-induced oral mucositis, and edema. Additionally, it alleviates cancer-related pain and fever, blood hypercoagulability, and associated complications such as depression and anxiety, and also mitigates chemotherapy-induced side effects like hand-foot syndrome. Basic research has demonstrated its potential anti-tumor mechanisms, including the inhibition of Wnt/β-catenin signaling pathway activation, suppression of mitogen-activated protein kinase (MAPK) pathway activation, and anti-tumor angiogenesis. Pharmacological studies have revealed that its active components inhibit tumor cell proliferation and migration, induce tumor cell apoptosis, suppress tumor angiogenesis, enhance the cytotoxicity of natural killer cells against tumors, improve the tumor microenvironment, and regulate immune function. This paper reviewed the latest research progress on Xuefu Zhuyutang in the treatment of malignant tumors from four aspects: theoretical exploration, clinical studies, mechanisms of action, and pharmacological basis, aiming to provide insights and methods for the clinical diagnosis and treatment of malignant tumors.
2.Xuefu Zhuyutang in Malignant Tumor Disease: A Review
Jiaqi JI ; Xiaoqing HU ; Yihan ZHAO ; Xuhang SUN ; Dandan WEI ; Junwen PEI ; Shiqing JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):321-330
Cancer has become a significant global public health issue, severely impacting public health and societal development. Despite advances in tumor treatment methods in recent years and a gradual decline in cancer mortality rates, drug-related adverse reactions and drug resistance remain substantial challenges. Traditional Chinese medicine (TCM) has demonstrated significant clinical efficacy in cancer treatment and small side effects, making it widely applied in the field of oncology. Xuefu Zhuyutang, derived from Yilin Gaicuo, is known for its abilities to invigorate blood circulation, dispel blood stasis, promote Qi flow, and alleviate pain. It was specifically formulated by the esteemed WANG Qingren of the Qing dynasty for the "blood stasis syndrome in the blood mansion" and is commonly used to treat Qi stagnation and blood stasis syndrome. Clinical studies have shown that Xuefu Zhuyutang, when combined with conventional Western medications, produces significant effects in the treatment of malignant tumors such as liver cancer, lung cancer, and cervical cancer. It substantially reduces the incidence of adverse reactions following Western treatments, including radiation esophagitis, radiation encephalopathy, radiation-induced oral mucositis, and edema. Additionally, it alleviates cancer-related pain and fever, blood hypercoagulability, and associated complications such as depression and anxiety, and also mitigates chemotherapy-induced side effects like hand-foot syndrome. Basic research has demonstrated its potential anti-tumor mechanisms, including the inhibition of Wnt/β-catenin signaling pathway activation, suppression of mitogen-activated protein kinase (MAPK) pathway activation, and anti-tumor angiogenesis. Pharmacological studies have revealed that its active components inhibit tumor cell proliferation and migration, induce tumor cell apoptosis, suppress tumor angiogenesis, enhance the cytotoxicity of natural killer cells against tumors, improve the tumor microenvironment, and regulate immune function. This paper reviewed the latest research progress on Xuefu Zhuyutang in the treatment of malignant tumors from four aspects: theoretical exploration, clinical studies, mechanisms of action, and pharmacological basis, aiming to provide insights and methods for the clinical diagnosis and treatment of malignant tumors.
3.Herbal Textual Research on Picrorhizae Rhizoma in Famous Classical Formulas
Feng ZHOU ; Yihan WANG ; Yanmeng LIU ; Xiaoqin ZHAO ; Kaizhi WU ; Cheng FENG ; Wenyue LI ; Wei ZHANG ; Wentao FANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):228-239
This article systematically analyzes the historical evolution of the name, origin, quality evaluation, harvesting, processing and other aspects of Picrorhizae Rhizoma by referring to the medical books, prescription books, and other documents of the past dynasties, combined with relevant modern research materials, in order to provide a basis for the development and utilization of famous classical formulas containing this medicinal herb. The research results indicate that Picrorhizae Rhizoma was first recorded in New Revised Materia Medica from the Tang dynasty. Throughout history, Huhuanglian has been used as its official name, and there are also aliases such as Gehu Luze, Jiahuanglian and Hulian. The main source of past dynasties is the the rhizomes of Picrorhiza kurrooa and P. scrophulariiflora. In ancient times, Picrorhizae Rhizoma was mainly imported by foreign traders via Guangzhou and other regions, and also produced in China, mainly in Xizang. In ancient times, it was harvested and dried in early August of the lunar calendar, while in modern times, it is mostly harvested from July to September, with the best quality being those with thick and crispy rhizomes without impurities, and bitter taste. Throughout history, Picrorhizae Rhizoma was collected, washed, sliced, and dried before being used as a raw material for medicine, it has a bitter and cold taste, mainly used to treat bone steaming, hot flashes, infantile chancre fever, and dysentery. There is no significant difference in taste and efficacy between ancient and modern times. Based on the research results, it is recommended that the rhizomes of P. scrophulariiflora in the 2020 edition of Chinese Pharmacopoeia, or the rhizomes of P. kurrooa, can be used in famous classical formulas containing this medicinal herb, which can be processed according to the processing requirements marked by the original formula. For those without clear processing requirements, the dried raw products are used as medicine.
4.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
5.Textual Research and Clinical Application Analysis of Classic Formula Fangji Fulingtang
Xiaoyang TIAN ; Lyuyuan LIANG ; Mengting ZHAO ; Jialei CAO ; Lan LIU ; Keke LIU ; Bingqi WEI ; Yihan LI ; Jing TANG ; Yujie CHANG ; Jingwen LI ; Bingxiang MA ; Weili DANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):270-277
The classic formula Fangji Fulingtang is from ZHANG Zhongjing's Synopsis of the Golden Chamber in the Eastern Han dynasty. It is composed of Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma, with the effects of reinforcing Qi and invigorating spleen, warming Yang and promoting urination. By a review of ancient medical books, this paper summarizes the composition, original plants, processing, dosage, decocting methods, indications and other key information of Fangji Fulingtang, aiming to provide a literature basis for the research, development, and clinical application of preparations based on this formula. Synonyms of Fangji Fulingtang exist in ancient medical books, while the formula composition in the Synopsis of the Golden Chamber is more widespread and far-reaching. In this formula, Stephaniae Tetrandrae Radix, Astragali Radix, Cinnamomi Ramulus, Poria, and Glycyrrhizae Radix et Rhizoma are the dried root of Stephania tetrandra, the dried root of Astragalus embranaceus var. mongholicus, the dried shoot of Cinnamomum cassia, the dried sclerotium of Poria cocos, and the dried root and rhizome of Glycyrrhiza uralensis, respectively. Fangji Fulingtang is mainly produced into powder, with the dosage and decocting method used in the past dynasties basically following the original formula. Each bag is composed of Stephaniae Tetrandrae Radix 13.80 g, Astragali Radix 13.80 g, Cinnamomi Ramulus 13.80 g, Poria 27.60 g, and Glycyrrhizae Radix et Rhizoma 9.20 g. The raw materials are purified, decocted in water from 1 200 mL to 400 mL, and the decoction should be taken warm, 3 times a day. Fangji Fulingtang was originally designed for treating skin edema, and then it was used to treat impediment in the Qing dynasty. In modern times, it is mostly used to treat musculoskeletal and connective tissue diseases and circulatory system diseases, demonstrating definite effects on various types of edema and heart failure. This paper clarifies the inheritance of Fangji Fulingtang and reveals its key information (attached to the end of this paper), aiming to provide a theoretical basis for the development of preparations based on this formula.
6.International Status of Using Digital and Intelligent Technology to Ensure Access to Medication of Rare Diseases and Prospects for System Improvement in China
JOURNAL OF RARE DISEASES 2025;4(1):139-148
This article explored the strategies of promoting access to medicines for rare diseases with digital and intelligent transformation technology in China. It summarized the mature, global-oriented, digital and intelligent transformation supported platforms for promoting rare disease research, technology and product development, as well as diagnosis and treatment information sharing in typical countries and region. This was followed with analyses of the challenges of access to medicines for rare diseases in China. It also systematically reviewed a range of policies implemented in China intended to promote access to medicines for rare diseases, and the digital and intelligent solutions to promote access to medicines for rare diseases at national and regional levels. The authors proposed that the central government agencies and their technical support institutions take a lead to construct a patient-centered dynamic and decentralized national big data sharing platform for rare diseases registry and research, medicines development, production and supply, access to care and medicines, payment and security, utilization surveillance in China. With the support of digital and intelligent technologies, this national platform would be able to link multiple stakeholders to achieve integrated analysis of big data, as well as international sharing and exchange, which will help to effectively and efficiently promote access to medicines for rare diseases in China.
7.Clinical and Mechanistic Study of Modified Sinisan in Treating Precancerous Lesions of Digestive System Based on "Inflammation-to-Cancer Transformation"
Xuhang SUN ; Dandan WEI ; Xin PENG ; Shanshan LI ; Yihan ZHAO ; Fuke YAO ; Shiqing JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):221-234
Tumorigenesis, invasion, and metastasis occur in the context of a persistent inflammatory microenvironment, and a variety of inflammatory factors can lead to the development of various tumors. Guided by the thought of "preventive treatment of disease" in TCM and the concept of tertiary prevention in modern medicine, it is of great significance to effectively intervene in the inflammatory stage of the disease, interrupt disease progression, prevent the occurrence of malignant tumors, and reverse the process of "inflammation-to-cancer transformation". Sinisan, a commonly used prescription in the Treatise on Febrile Diseases, has been widely applied in the treatment of precancerous lesions of the digestive system, demonstrating considerable advantages. This article reviewed literature from the past 20 years, summarizing the application of Sinisan in precancerous lesions of the digestive system from three aspects: the exploration of its prescription-syndrome relationship, clinical application, and mechanistic study. It is found that basic syndrome indications of Sinisan include harmonizing the Earth element to promote spleen-stomach transportation and transformation, soothing the liver and nourishing the Wood element to restore the smooth flow of Qi, and regulating Yin and Yang to relieve stagnation within the system. In clinical application, Sinisan has shown significant efficacy in atrophic gastritis and precancerous conditions such as intestinal metaplasia, gastric ulcer, ulcerative colitis, esophagitis, and pancreatitis. Mechanistic studies have revealed that Sinisan can inhibit inflammatory factors and improve the inflammatory microenvironment, inhibit cell proliferation and regulate apoptosis, exhibit anti-angiogenic and antitumorigenic effects, modulate immune function, and exert antioxidant effects. These mechanisms can be achieved by regulating pathways such as nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1), farnesoid X receptor (FXR)/Nrf2, phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), Takeda G protein-coupled receptor 5/cyclic adenosine monophosphate/protein kinase A (TGR5/cAMP/PKA), interleukin-4/signal transducer and activator of transcription 6 (IL-4/STAT6), Janus kinase/signal transducer and activator of transcription (JAK/STAT), RhoA/Rho-associated protein kinase (RhoA/ROCK), and transforming growth factor-β/Smad proteins (TGF-β/Smads), confirming Sinisan's role in reversing the inflammation-to-cancer transformation. The current research status of Sinisan in precancerous lesions of the digestive system was thoroughly examined through the above three aspects, along with the identification of limitations and areas for improvement in current research. The aim is to provide a basis and support for future in-depth research on Sinisan, promote the development of new integrated treatment models combining TCM and Western medicine for precancerous lesions, and aid in the research and development of drugs related to precancerous lesions.
8.Compatibility Effect and Mechanism of Astragali Radix-Curcumae Rhizoma on Antitumor: A Review
Hanyu KANG ; Shanshan LI ; Dandan WEI ; Yihan ZHAO ; Ruxin DU ; Shiqing JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):276-286
Malignant tumor is a serious and difficult disease threatening human health, which has a high morbidity and mortality rate worldwide. Traditional Chinese medicine has unique advantages in improving the therapeutic effect of malignant tumors and alleviating adverse reactions. Traditional Chinese medicine believes that Qi deficiency and blood stasis are important pathogeneses in the development of malignant tumors, and the method of supplementing Qi and activating blood is an effective strategy for treating malignant tumors. Astragali Radix, sweet in taste and warm in nature, has effects of tonifying Qi and rising Yang, strengthening the exterior and reducing sweat, promoting fluid and nourishing blood. Curcumae Rhizoma, acrid and bitter in taste and warm in nature, has the effects of promoting Qi and breaking blood stasis, eliminating mass, and relieving pain. Astragali Radix-Curcumae Rhizoma, as the classic herb pair of invigorating Qi and activating blood, has a clear effect on inhibiting tumor growth and metastasis. Studies have shown that Astragali Radix-Curcumae Rhizoma contains astragalus polysaccharide, astragaloside, calycosin, formononetin, curcumin, β-elemene, curcumenol, curcumenone, curcumendione, gemacrone, and other anti-tumor active ingredients. It can significantly inhibit the occurrence and development of liver cancer, colorectal cancer, gastric cancer, lung cancer, ovarian cancer, cervical cancer, breast cancer, and other cancers and has the advantages of superposition effect, synergistic complementarity, and increased dissolution compared with single herb and monomer of Chinese traditional herbs and has been widely valued in the field of TCM anti-cancer. Its anti-tumor mechanism includes inhibition of tumor cell proliferation, promotion of tumor cell apoptosis and autophagy, anti-invasion and metastasis, regulation of immune function, and enhancement of anti-tumor drug sensitivity. By combining Chinese and foreign literature, the compatibility effect and anti-tumor mechanism of Astragali Radix-Curcumae Rhizoma were summarized, and then scientific compatibility of these two herbs was expounded, in order to provide a useful reference for clinical application and future research of Astragali Radix-Curcumae Rhizoma.
9.Imaging poly(ADP-ribose) polymerase-1 (PARP1) in vivo with 18F-labeled brain penetrant positron emission tomography (PET) ligand.
Xin ZHOU ; Jiahui CHEN ; Jimmy S PATEL ; Wenqing RAN ; Yinlong LI ; Richard S VAN ; Mostafa M H IBRAHIM ; Chunyu ZHAO ; Yabiao GAO ; Jian RONG ; Ahmad F CHAUDHARY ; Guocong LI ; Junqi HU ; April T DAVENPORT ; James B DAUNAIS ; Yihan SHAO ; Chongzhao RAN ; Thomas L COLLIER ; Achi HAIDER ; David M SCHUSTER ; Allan I LEVEY ; Lu WANG ; Gabriel CORFAS ; Steven H LIANG
Acta Pharmaceutica Sinica B 2025;15(10):5036-5049
Poly(ADP-ribose) polymerase 1 (PARP1) is a multifunctional protein involved in diverse cellular functions, notably DNA damage repair. Pharmacological inhibition of PARP1 has therapeutic benefits for various pathologies. Despite the increased use of PARP inhibitors, challenges persist in achieving PARP1 selectivity and effective blood-brain barrier (BBB) penetration. The development of a PARP1-specific positron emission tomography (PET) radioligand is crucial for understanding disease biology and performing target occupancy studies, which may aid in the development of PARP1-specific inhibitors. In this study, we leverage the recently identified PARP1 inhibitor, AZD9574, to introduce the design and development of its 18F-isotopologue ([18F]AZD9574). Our comprehensive approach, encompassing pharmacological, cellular, autoradiographic, and in vivo PET imaging evaluations in non-human primates, demonstrates the capacity of [18F]AZD9574 to specifically bind to PARP1 and to successfully penetrate the BBB. These findings position [18F]AZD9574 as a viable molecular imaging tool, poised to facilitate the exploration of pathophysiological changes in PARP1 tissue abundance across various diseases.
10.Comparison of Cultivated and Wild-simulated Astragali Radix Based on Traditional Quality Evaluation
Jiachen ZHAO ; Yapeng WANG ; Yihan WANG ; Jinxiu QIAN ; Aiping DENG ; Tiegui NAN ; Liping KANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):21-30
ObjectiveBased on the traditional quality evaluation methods summarized in previous dynasties, this paper systematically contrasted cultivated Astragali Radix(CA) and wild-simulated Astragali Radix(WA) from the aspects of character, microstructure and chemical composition by modern technological means. MethodThe collected CA and WA were compared in characters and microscopic characteristics in cross section, and comparative analysis were performed on the contents of cellulose, extracts, carbohydrate, total flavonoids, total saponins, etc. Then ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometer(UPLC-Q-TOF-MS) and desorption electrospray ionization mass spectrometry imaging(DESI-MSI) were used to comparatively analyze the secondary metabolites and their spatial distributions in the xylem and phloem of CA and WA. ResultIn terms of characters, the characters and sectional features of WA was consistent with the characteristics of high-quality Astragali Radix, while the CA was quite different from the traditional high-quality Astragali Radix. In terms of microscopy, the phellem layer of CA was thin, and the section fissures were mostly distributed through the cambium in a long strip shape without obvious growth ring characteristics. The cork layer of WA was thick, and the cracks in the section were distributed in the center of the xylem and the outer edge of the phloem in an irregular cavity shape. The cambium was tight without cracks, and had obvious characteristics of a growth ring. In terms of chemical composition, the contents of water-soluble extract, 80% ethanol extract and sucrose of CA was significantly higher than those of WA, while the contents of total saponins, lignin and hemicellulose were significantly lower than those of WA. And the contents of 100% ethanol extract, total polysaccharides and total flavonoids in both of them were generally similar, but slightly higher in WA. The contents of 2 kinds of monoacyl-substituted flavonoid glycosides in the xylem of WA was significantly higher than those of CA, while the contents of 2 kinds of flavonoid aglycones and one flavonoid glycoside were on the contrary. The contents of 7 saponins in phloem of WA were significantly higher than those of CA. ConclusionThere are significant differences between CA and WA in characters, microstructure and chemical components, in which CA has a fast growth rate and a short planting period, and the primary metabolites such as water-soluble extracts and sucrose are more enriched, which is the reason for its firm texture and sweetness being significantly higher than those of WA. However, the contents of lignin, hemicellulose and some secondary metabolites in WA are significantly higher than those in the CA, which are close to the traditional description of characters and quality. Based on the results of this study, it is suggested to strengthen the production of WA, improve the supply capacity of WA, and gradually upgrade the current standard. It is recommended to increase the contents of monoacyl-substituted flavonoid glycosides, total saponins and other indicators that can characterize different production methods, so as to guide the high-quality production of Astragali Radix.

Result Analysis
Print
Save
E-mail