1.Role of SPINK in Dermatologic Diseases and Potential Therapeutic Targets
Yong-Hang XIA ; Hao DENG ; Li-Ling HU ; Wei LIU ; Xiao TAN
Progress in Biochemistry and Biophysics 2025;52(2):417-424
Serine protease inhibitor Kazal-type (SPINK) is a skin keratinizing protease inhibitor, which was initially found in animal serum and is widely present in plants, animals, bacteria, and viruses, and they act as key regulators of skin keratinizing proteases and are involved in the regulation of keratinocyte proliferation and inflammation, primarily through the inhibition of deregulated tissue kinin-releasing enzymes (KLKs) in skin response. This process plays a crucial role in alleviating various skin problems caused by hyperkeratinization and inflammation, and can greatly improve the overall condition of the skin. Specifically, the different members of the SPINK family, such as SPINK5, SPINK6, SPINK7, and SPINK9, each have unique biological functions and mechanisms of action. The existence of these members demonstrates the diversity and complexity of skin health and disease. First, SPINK5 mutations are closely associated with the development of various skin diseases, such as Netherton’s syndrome and atopic dermatitis, and SPINK5 is able to inhibit the activation of the STAT3 signaling pathway, thereby effectively preventing the metastasis of melanoma cells, which is important in preventing the invasion and migration of malignant tumors. Secondly, SPINK6 is mainly distributed in the epidermis and contains lysine and glutamate residues, which can act as a substrate for epidermal transglutaminase to maintain the normal structure and function of the skin. In addition, SPINK6 can activate the intracellular ERK1/2 and AKT signaling pathways through the activation of epidermal growth factor receptor and protease receptor-2 (EphA2), which can promote the migration of melanoma cells, and SPINK6 further deepens its role in stimulating the migration of malignant tumor cells by inhibiting the activation of STAT3 signaling pathway. This process further deepens its potential impact in stimulating tumor invasive migration. Furthermore, SPINK7 plays a role in the pathology of some inflammatory skin diseases, and is likely to be an important factor contributing to the exacerbation of skin diseases by promoting aberrant proliferation of keratinocytes and local inflammatory responses. Finally, SPINK9 can induce cell migration and promote skin wound healing by activating purinergic receptor 2 (P2R) to induce phosphorylation of epidermal growth factor and further activating the downstream ERK1/2 signaling pathway. In addition, SPINK9 also plays an antimicrobial role, preventing the interference of some pathogenic microorganisms. Taken as a whole, some members of the SPINK family may be potential targets for the treatment of dermatological disorders by regulating multiple biological processes such as keratinization metabolism and immuno-inflammatory processes in the skin. The development of drugs such as small molecule inhibitors and monoclonal antibodies has great potential for the treatment of dermatologic diseases, and future research on SPINK will help to gain a deeper understanding of the physiopathologic processes of the skin. Through its functions and regulatory mechanisms, the formation and maintenance of the skin barrier and the occurrence and development of inflammatory responses can be better understood, which will provide novel ideas and methods for the prevention and treatment of skin diseases.
2.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
3.Construction and functional study of CD19 CAR-T cells that secrete IL-2 locally
WANG Wenjuan1 ; CHEN Jing2 ; HU Zhou1 ; LIU Xiuying1 ; WANG Jianxun1, 3
Chinese Journal of Cancer Biotherapy 2025;32(4):356-363
[摘 要] 目的:探讨基于新型单载体SynNotch系统构建的局部分泌IL-2的CAR-T细胞(Syn.CD19.IL-2 CAR-T细胞)对传统CD19 CAR-T细胞功能的影响。方法:基于本课题组前期构建的单载体SynNotch系统,将CD19特异性FMC63抗体与IL-2表达模块整合,通过自失活逆转录病毒载体转导T细胞制备Syn.CD19.IL-2 CAR-T细胞。诱导验证实验分为Syn.CD19.IL-2 CAR-T细胞组和未转导T细胞组,通过ELISA检测抗原刺激后IL-2分泌水平。采用CFSE染色法检测在Syn.CD19.IL-2 CAR-T细胞存在时,CD19 CAR-T细胞与肿瘤Raji-Luc或SW620-CD19-Luc细胞共培养时,IL-2的分泌对CD19 CAR-T细胞增殖的影响。流式细胞术检测CD69表达,观察在Syn.CD19.IL-2 CAR-T细胞分泌IL-2的情况下,CD19 CAR-T细胞与Raji-Luc细胞共培养时的激活情况。结果:成功构建自失活逆转录病毒载体Syn.CD19.IL-2 CAR,制备出Syn.CD19.IL-2 CAR-T细胞,病毒滴度 > 1×107拷贝/mL,转导效率达37.1%。抗原刺激后,SynNotch CAR-T细胞IL-2分泌量显著高于未转导T细胞(P < 0.001)。在Syn.CD19.IL-2 CAR-T细胞分泌IL-2时,CD19 CAR-T细胞具有更强的增殖能力和更高的活化水平(均P < 0.001)。结论:成功构建的Syn.CD19.IL-2 CAR-T细胞能显著增强CD19 CAR-T细胞的增殖和活化能力。
4.Research progress on the effectiveness of bibliotherapy interventions for adolescent mental health
SU Fan, LU Jinkui, SONG Yongjing, LIU Cong
Chinese Journal of School Health 2025;46(5):746-750
Abstract
As a systematic psychological intervention method, bibliotherapy possesses advantages such as low cost, high accessibility, and significant efficacy. The paper systematically reviews the recent research progress of bibliotherapy in the field of adolescent mental health intervention including covering preventive, therapeutic, developmental, personalized, and comprehensive approaches. It discusses the effectiveness and key influencing factors of these interventions. Findings indicate that bibliotherapy can effectively reduce the risk of depressive and anxiety symptoms in adolescents, and improve their emotional regulation skills and social adaptability. Different types of interventions demonstrate varied effects across different populations. Personalized and comprehensive intervention models can further enhance the outcomes, to provide theoretical basis and practical guidance for the development of localized bibliotherapy intervention programs.
5.Epidemiological characteristics and immunization history of pertussis cases in Yichang City 2018 - 2023
Weiwei WANG ; Xiaojun LIU ; Yi YAN ; Jing JIANG ; Qiujing YU ; Wei JIANG ; Li GUO ; Jialian YU ; Guiwen LI ; Qiwei WANG
Journal of Public Health and Preventive Medicine 2025;36(6):86-89
Objective To analyze the epidemiological characteristics and immunization history of pertussis cases in Yichang City, Hubei Province from 2018 to 2023. Methods Data on the incidence and immunization history of pertussis cases were collected in Yichang City from 2018 to 2023, and the epidemiological characteristics was analyzed and described. Results A total of 109 cases of pertussis were reported in Yichang from 2018 to 2023, and the annual average reported incidence rate was 0.45/100,000. The incidence rate reported in each year was between 0~1.58/100,000. The area with the highest annual reported incidence rate was Xiling District (1.19/100,000). There was a statistically significant difference in the incidence rate between different years (χ2=208.26, P < 0.001). The annual reported incidence rate showed a significant increasing trend (χ2 trend =125.71, P < 0.001). The ratio of male to female cases was 1.22. There was no significant difference in the annual reported incidence rates between males and females (χ2=0.85, P=0.36). Children aged 3-9 years accounted for 60.55%. Students and scattered children accounted for 45.87% and 36.70%, respectively. Before the onset of the disease, 72.48% had a history of immunization with pertussis-containing vaccine, and 27.52% had no history of immunization. The shortest interval between the last dose of pertussis-containing vaccine and the onset of the disease was 8 days, the longest was 4057 days, and the median was 1882 days. Conclusion From 2018 to 2023, the reported incidence of pertussis in Yichang City has been on the rise, with the majority of cases occurring in children and students under the age of 9. It is recommended to strengthen pertussis disease monitoring.
6.Mechanism of tannins from Galla chinensis cream in promoting skin wound healing in rats based on FAK/PI3K/Akt/mTOR signaling pathway.
Wen YI ; Zi-Yi YAN ; Meng-Qiong SHI ; Ying ZHANG ; Jie LIU ; Qian YI ; Hai-Ming TANG ; Yi-Wen LIU
China Journal of Chinese Materia Medica 2025;50(2):480-497
This study investigated the effects and action mechanism of tannins from Galla chinensis cream(TGCC) on the skin wound of rat tail. Male Sprague Dawley(SD) rats were randomly divided into a control group, model group, model+low-dose TGCC(50 mg per rat) group, model+high-dose TGCC group(100 mg per rat), and model+TGC+FAK inhibitor(Y15) cream(100 mg+10 mg per rat) group, with 10 rats in each group. After the rat tail skin injury model was successfully constructed, in the treatment group, corresponding drugs were applied to the wound surface, while in the control and model groups, the same amount of cream base as the TGCC group was applied by the same method. Then, sterile gauze was wrapped around the wound edge, and these operations were performed three times a day for 28 consecutive days. The wound healing status at the third, seventh, eleventh, fourteenth, twenty-first, and twenty-eighth days was recorded, and the wound healing rate and healing time were calculated. On the day after the last dose of medication, rat serum and tail skin wound tissue were collected for analyzing the activities of serum alanine aminotransferase(ALT), aspartate aminotransferase(AST), creatinine(CREA), urea, reactive oxygen species(ROS), interferon gamma(IFN-γ), interleukin(IL)-1β, IL-6, IL-4, IL-10, tumor necrosis factor(TNF)-α, as well as catalase(CAT), glutathione(GSH), lactate dehydrogenase(LDH), malondialdehyde(MDA), myeloperoxidase(MPO), superoxide dismutase(SOD), total antioxidant capacity(T-AOC), platelet endothelial cell adhesion molecule-1(CD31), and leukocyte differentiation antigen 34(CD34) in the wound tissue of rat tail skin. Hematoxylin-eosin, Masson, and sirius red staining were used to observe the morphological changes in the wound tissue of rat tail skin. The thickness of the epidermis, the number of fibroblasts and blood vessels, and the contents of collagen fibers, typeⅠ collagen(COLⅠ), and COLⅢ were calculated. The mRNA expressions of keratin 10(KRT10), KRT14, vascular endothelial growth factor(VEGF), fibroblast growth factor(FGF), epidermal growth factor(EGF), CD31, CD34, matrix metallopeptidase-2(MMP-2), MMP-9, COLⅠ, COLⅢ, desmin, fibroblast specific protein 1(FSP1), IFN-γ, IL-1β, TNF-α, IL-4, IL-6, and IL-10 in skin wound tissue were determined by quantitative real-time polymerase chain reaction(PCR). Western blot was utilized to detect the protein expressions of KRT10, KRT14, VEGF, FGF, EGF, MMP-2, MMP-9, COLⅠ, COLⅢ, desmin, FSP1, focal adhesion kinase(FAK), phosphorylated focal adhesion kinase(p-FAK), phosphatidylin-ositol-3-kinase(PI3K), phosphorylated phosphatidylin-ositol-3-kinase(p-PI3K), protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), mammalian target of rapamycin(mTOR), and phosphorylated mammalian target of rapamycin(p-mTOR). The results manifest that TGCC can dramatically elevate the healing rate of rat tail wounds and shorten wound healing time. Besides, it can reduce serum ROS levels, the contents of MDA, MPO, and LDH in the rat skin wound tissue, as well as the serum IFN-γ, IL-1β, IL-6, and TNF-α levels and the mRNA expression levels of IFN-γ, IL-1β, IL-6, and TNF-α in the skin wound tissue. It can elevate the activities of CAT, GSH, SOD, and T-AOC in wound tissue, the IL-4 and IL-10 contents in serum, and the mRNA expressions of IL-4 and IL-10 in the wound tissue. In addition, TGGC can inhibit inflammatory cell infiltration and increase the epidermal thickness, counts of fibroblasts and blood vessels, and contents of collagen fibers, COLⅠ, and COLⅢ. Besides, TGCC can elevate the mRNA and protein expressions of epidermal differentiation markers(KRT10 and KRT14), endothelial cell markers(CD31 and CD34), angiogenesis and fibroblast proliferation, differentiation markers(VEGF, FGF, EGF, COLⅠ, COLⅢ, desmin, and FSP1), reduce the mRNA and protein expressions of gelatinases(MMP-2 and MMP-9), and increase protein expressions of p-FAK, p-PI3K, p-Akt, p-mTOR, as well as ratios of p-FAK/FAK, p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR. These results suggest that TGCC can significantly facilitate skin wound healing, and its mechanism may be related to the activation of the FAK/PI3K/Akt/mTOR signaling pathway, inhibition of inflammatory cell infiltration in skin wound tissue, elevation of epidermal thickness, counts of fibroblasts and vessels, and contents of collagen fiber, COLⅠ, and COLⅢ, and reduction of MMP-2 and MMP-9 expressions, thus accelerating wound healing.
Animals
;
Male
;
Wound Healing/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
TOR Serine-Threonine Kinases/genetics*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Skin/metabolism*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Tannins/pharmacology*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
;
Focal Adhesion Kinase 1/genetics*
7.Advances in Radiotherapy for Extensive-stage Small Cell Lung Cancer in the Era of Immunotherapy.
Tingting CHEN ; Yanling YANG ; Haonan HAN ; Dongmin LIU ; Yajing YUAN ; Liming XU
Chinese Journal of Lung Cancer 2025;28(5):353-362
Small cell lung cancer (SCLC) is the thoracic malignant tumor and accounts for about 15% of lung malignancies and transfer often occurs by the time of diagnosis. Extensive stage-small cell lung cancer (ES-SCLC) accounts for about 2/3 of all SCLC. For many years, radiotherapy has occupied an important position in the treatment of SCLC, especially in the treatment of ES-SCLC, because SCLC is more sensitive to radiotherapy. However, in recent years, immune checkpoint inhibitor has shown more excellent antitumor activity in the treatment of ES-SCLC and become the mainstream argument for the treatment of ES-SCLC. However, will radiotherapy be buried by the times among the therapeutic approaches for ES-SCLC? In this article, we will review the clinical progress of radiotherapy, immunotherapy and combination therapy for ES-SCLC.
.
Humans
;
Small Cell Lung Carcinoma/therapy*
;
Lung Neoplasms/therapy*
;
Immunotherapy
;
Neoplasm Staging
;
Radiotherapy/methods*
;
Combined Modality Therapy
8.Gentiopicroside Alleviates Atherosclerosis by Suppressing Reactive Oxygen Species-Dependent NLRP3 Inflammasome Activation in Vascular Endothelial Cells via SIRT1/Nrf2 Pathway.
Zhu-Qing LI ; Feng ZHANG ; Qi LI ; Li WANG ; Xiao-Qiang SUN ; Chao LI ; Xue-Mei YIN ; Chun-Lei LIU ; Yan-Xin WANG ; Xiao-Yu DU ; Cheng-Zhi LU
Chinese journal of integrative medicine 2025;31(2):118-130
OBJECTIVE:
To evaluate the protective effects of gentiopicroside (GPS) against reactive oxygen species (ROS)-induced NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in endothelial cells, aiming to reduce atherosclerosis.
METHODS:
Eight-week-old male ApoE-deficient mice were randomly divided into 2 groups (n=10 per group): the vehicle group and the GPS treatment group. Both groups were fed a high-fat diet for 16 weeks. GPS (40 mg/kg per day) was administered by oral gavage to the GPS group, while the vehicle group received an equivalent volume of the vehicle solution. At the end of the treatment, blood and aortic tissues were collected for assessments of atherosclerosis, lipid profiles, oxidative stress, and molecular expressions related to NLRP3 inflammasome activation, ROS production, and apoptosis. Additionally, in vitro experiments on human aortic endothelial cells treated with oxidized low-density lipoprotein (ox-LDL) were conducted to evaluate the effects of GPS on NLRP3 inflammasome activation, pyroptosis, apoptosis, and ROS production, specifically examining the role of the sirtuin 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. SIRT1 and Nrf2 inhibitors were used to confirm the pathway's role.
RESULTS:
GPS treatment significantly reduced atherosclerotic lesions in the en face aorta (P<0.01), as well as in the thoracic and abdominal aortic regions, and markedly decreased sinus lesions within the aortic root (P<0.05 or P<0.01). Additionally, GPS reduced oxidative stress markers and proinflammatory cytokines, including interleukin (IL)-1 β and IL-18, in lesion areas (P<0.05, P<0.01). In vitro, GPS inhibited ox-LDL-induced NLRP3 activation, as evidenced by reduced NLRP3 (P<0.01), apoptosis-associated speck-like protein containing a CARD, cleaved-caspase-1, and cleaved-gasdermin D expressions (all P<0.01). GPS also decreased ROS production, apoptosis, and pyroptosis, with the beneficial effects being significantly reversed by SIRT1 or Nrf2 inhibitors.
CONCLUSION
GPS exerts an antiatherogenic effect by inhibiting ROS-dependent NLRP3 inflammasome activation via the SIRT1/Nrf2 pathway.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Iridoid Glucosides/therapeutic use*
;
NF-E2-Related Factor 2/metabolism*
;
Animals
;
Atherosclerosis/metabolism*
;
Inflammasomes/drug effects*
;
Male
;
Sirtuin 1/metabolism*
;
Signal Transduction/drug effects*
;
Humans
;
Endothelial Cells/pathology*
;
Mice
;
Oxidative Stress/drug effects*
;
Apoptosis/drug effects*
;
Lipoproteins, LDL
;
Mice, Inbred C57BL
9.Effect of the Small Molecule Inhibitor of Kallikrein-Related Peptidase 7 Against Ovarian CancerA.
Hong-Juan SHI ; Wei LIU ; Li-Ling HU ; Xiao TAN
Acta Academiae Medicinae Sinicae 2025;47(3):366-374
Objective To investigate the effect of the small molecule inhibitor C42 of kallikrein-related peptidase 7(KLK7)on ovarian cancer with elevated expression of KLK7 and evaluate the feasibility of C42 as a new therapeutic strategy for ovarian cancer.Methods The CCK-8 assay,flow cytometry,cell scratch assay,Transwell assay,and Western blotting were employed to assess the effects of C42 on the proliferation,migration,and invasion of the ovarian cancer cell line SKOV3,which was characterized by high KLK7 expression.Additionally,a subcutaneous xenograft model of ovarian cancer was established with SKOV3 cells in nude mice to evaluate the effects of C42 on the tumor growth and metastasis.The expression levels of proteins associated with tumor metastasis and invasion in the tumor tissue were examined by immunohistochemical techniques.Results The cellular experiment showed that C42 suppressed the proliferation,migration,and invasion(all P<0.001)of SKOV3 cells,compared with the control group.The animal experiment showed that compared with the control group,the 10.2 mg/kg C42 group exhibited a decreased tumor weight(P=0.009) and attenuated liver metastases.Immunohistochemical staining revealed that the 10.2 mg/kg C42 group demonstrated down-regulated expression of the tumor proliferation marker Ki-67(P=0.002)and the tumor metastasis and invasion-associated proteins such as matrix metalloproteinase-9(P=0.027)and Vimentin(P=0.039).Conclusion The small molecule inhibitor C42 of KLK7 effectively suppresses the proliferation,migration,and invasion of ovarian cancer SKOV3 cells.
Female
;
Humans
;
Ovarian Neoplasms/drug therapy*
;
Kallikreins/antagonists & inhibitors*
;
Animals
;
Mice, Nude
;
Cell Line, Tumor
;
Cell Proliferation/drug effects*
;
Mice
;
Cell Movement/drug effects*
;
Xenograft Model Antitumor Assays
;
Mice, Inbred BALB C
10.Impact of donor characteristics on red blood cell quality and transfusion outcomes
Peng LI ; Kaiqiang LIU ; Mingming QIAO ; Xia YANG ; Shenglan WANG ; Xia HUANG
Chinese Journal of Blood Transfusion 2025;38(12):1786-1793
Objective: To systematically analyzes the impact of blood donor characteristics on red blood cell (RBC) quality and transfusion outcomes, and to provide a scientific basis for optimizing donor selection criteria and developing personalized transfusion strategies. Methods: A literature search was conducted across electronic databases including CNKI, VIP, Wanfang Data, PubMed, and Embase using combinations of keywords such as "donor characteristics", "blood storage lesion", "blood quality", and "transfusion outcomes" for summary and analysis. Results: Factors associated with the blood donor characteristics including demographic characteristics (sex, age, body mass index), lifestyle habits (smoking, alcohol consumption, exercise), and dietary or pharmacological exposures significantly influence blood storage stability and transfusion efficacy by modulating erythrocyte metabolism, oxidative stress levels, and immune properties. Conclusion: The complexity and diversity of the blood donor characteristics are associated with blood quality and transfusion outcomes. Future efforts should focus on refining donor selection criteria and establishing personalized transfusion strategies to enhance blood product quality and improve patient outcomes.


Result Analysis
Print
Save
E-mail