1.Correlation of serum leucine-rich α-2 glycoprotein 1 and fibroblast growth factor 21 levels with neovascular glaucoma
Zhong LUO ; He ZHOU ; Yi HUANG ; Wanjiang DONG
International Eye Science 2025;25(1):118-121
AIM: To investigate the correlation of serum leucine-rich α-2 glycoprotein 1(LRG1)and fibroblast growth factor 21(FGF-21)levels with neovascular glaucoma(NVG).METHODS: A total of 110 cases(110 eyes)with NVG admitted to the ophthalmology department from September 2020 to September 2022 were selected as NVG group, with 23 cases of grade II, 44 cases of grade III, and 43 cases of grade IV, while 90 sex and age matched cataract patients(90 eyes)were selected as control group. The levels of LRG1, FGF-21, vascular endothelial growth factor(VEGF), pigment epithelium-derived factor(PEDF), and tumor necrosis factor-α(TNF-α)in serum were detected by ELISA; Pearson correlation analysis was used to analyze the correlation of serum LRG1 and FGF-21 levels with Teich grade, VEGF, PEDF and TNF-α levels.RESULTS: The levels of serum LRG1, FGF-21, VEGF, PEDF and TNF-α in the NVG group were significantly higher than those in the control group(all P<0.01). With the increase of Teich grading, the levels of serum LRG1, FGF-21, VEGF, PEDF and TNF-α in NVG patients significantly increased in turn(all P<0.05). Correlation analysis showed that the levels of LRG1 and FGF-21 in serum of NVG patients were positively correlated with the levels of VEGF, PEDF and TNF-α(all P<0.05).CONCLUSION: The levels of LRG1 and FGF-21 in serum of patients with NVG are obviously increased, which are positively correlated with the levels of VEGF, PEDF and TNF-α, both of which may be related to the development of NVG.
2.Therapeutic role of miR-26a on cardiorenal injury in a mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway.
Weijie NI ; Yajie ZHAO ; Jinxin SHEN ; Qing YIN ; Yao WANG ; Zuolin LI ; Taotao TANG ; Yi WEN ; Yilin ZHANG ; Wei JIANG ; Liangyunzi JIANG ; Jinxuan WEI ; Weihua GAN ; Aiqing ZHANG ; Xiaoyu ZHOU ; Bin WANG ; Bi-Cheng LIU
Chinese Medical Journal 2025;138(2):193-204
BACKGROUND:
Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD.
METHODS:
We generated an microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t -test were used to analyze the data.
RESULTS:
Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes.
CONCLUSIONS
Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Animals
;
MicroRNAs/metabolism*
;
Angiotensin II/toxicity*
;
Mice
;
Renal Insufficiency, Chronic/chemically induced*
;
Mice, Knockout
;
Disease Models, Animal
;
Male
;
Signal Transduction/genetics*
;
LIM Domain Proteins/genetics*
;
Mice, Inbred C57BL
;
Cell Line
;
Humans
3.Telpegfilgrastim for chemotherapy-induced neutropenia in breast cancer: A multicenter, randomized, phase 3 study.
Yuankai SHI ; Qingyuan ZHANG ; Junsheng WANG ; Zhong OUYANG ; Tienan YI ; Jiazhuan MEI ; Xinshuai WANG ; Zhidong PEI ; Tao SUN ; Junheng BAI ; Shundong CANG ; Yarong LI ; Guohong FU ; Tianjiang MA ; Huaqiu SHI ; Jinping LIU ; Xiaojia WANG ; Hongrui NIU ; Yanzhen GUO ; Shengyu ZHOU ; Li SUN
Chinese Medical Journal 2025;138(4):496-498
4.Morphological and physiological responses to shading caused by dense planting or light quality modulation in shade-tolerant plant Anoectochilus roxburghii.
Xiao-Lei GUO ; Li-Chun ZHOU ; Ming-Jie LI ; Zhong-Yi ZHANG ; Li GU
China Journal of Chinese Materia Medica 2025;50(10):2648-2657
The balance between growth and defense in response to nearby or canopy shading in heliotropic plants has been deeply understood. However, the adaptive traits developed by shade-tolerant plants through long-term evolution remain unclear. In this study, the typical shade-tolerant medicinal plant Anoectochilus roxburghii was used as the experimental material.(1) Different planting densities were set, including 8 cm(row spacing) × 8 cm(plant spacing), 6 cm × 6 cm, 4 cm × 4 cm, and 2 cm × 2 cm, to monitor the individual plant responses to nearby shading.(2) Different light environments, including blue light∶red light=3∶2(B3R2), blue light∶red light∶far-red light=3∶2∶1(B3R2FR1), blue light∶red light∶far-red light=3∶2∶2(B3R2FR2), and blue light∶red light∶far-red light=3∶2∶4(B3R2FR4), were set to monitor the morphological and physiological changes in plants in response to actual shading conditions. The results showed that:(1) Moderate increases in planting density helped optimize morphological traits such as stem diameter and leaf area. This not only slightly increased biomass but also significantly improved SOD activity in both leaves and stems, as well as lignin content in stems, thereby enhancing the plant's defense capabilities.(2) Increasing the far-red light in the light environment negatively regulated the plant height of A. roxburghii, which was contrary to the typical shade-avoidance response observed in heliotropic plants. However, it significantly enhanced SOD and POD activity in both stems and leaves, as well as lignin content in stems. Furthermore, it reduced the incidence and disease index of stalk rot, effectively defending against biotic stress. Therefore, the shade-tolerant plant A. roxburghii has specific adaptive strategies for shading conditions. Reasonable dense planting or light environment modulation can synergistically improve yield, medicinal quality, and resistance of A. roxburghii. This study provides a theoretical foundation and technical support for optimizing the regional deployment and cultivation strategies of ecological planting for Chinese medicinal materials.
Orchidaceae/genetics*
;
Light
;
Plant Leaves/physiology*
;
Sunlight
;
Adaptation, Physiological/radiation effects*
;
Plant Proteins/genetics*
5.BRD4 regulates m6A of ESPL1 mRNA via interaction with ALKBH5 to modulate breast cancer progression.
Haisheng ZHANG ; Linlin LU ; Cheng YI ; Tao JIANG ; Yunqing LU ; Xianyuan YANG ; Ke ZHONG ; Jiawang ZHOU ; Jiexin LI ; Guoyou XIE ; Zhuojia CHEN ; Zongpei JIANG ; Gholamreza ASADIKARAM ; Yanxi PENG ; Dan ZHOU ; Hongsheng WANG
Acta Pharmaceutica Sinica B 2025;15(3):1552-1570
The interaction between m6A-methylated RNA and chromatin modification remains largely unknown. We found that targeted inhibition of bromodomain-containing protein 4 (BRD4) by siRNA or its inhibitor (JQ1) significantly decreases mRNA m6A levels and suppresses the malignancy of breast cancer (BC) cells via increased expression of demethylase AlkB homolog 5 (ALKBH5). Mechanistically, inhibition of BRD4 increases the mRNA stability of ALKBH5 via enhanced binding between its 3' untranslated regions (3'UTRs) with RNA-binding protein RALY. Further, BRD4 serves as a scaffold for ubiquitin enzymes tripartite motif containing-21 (TRIM21) and ALKBH5, resulting in the ubiquitination and degradation of ALKBH5 protein. JQ1-increased ALKBH5 then demethylates mRNA of extra spindle pole bodies like 1 (ESPL1) and reduces binding between ESPL1 mRNA and m6A reader insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3), leading to decay of ESPL1 mRNA. Animal and clinical studies confirm a critical role of BRD4/ALKBH5/ESPL1 pathway in BC progression. Further, our study sheds light on the crosstalks between histone modification and RNA methylation.
6.Prediction of Pharmacoresistance in Drug-Naïve Temporal Lobe Epilepsy Using Ictal EEGs Based on Convolutional Neural Network.
Yiwei GONG ; Zheng ZHANG ; Yuanzhi YANG ; Shuo ZHANG ; Ruifeng ZHENG ; Xin LI ; Xiaoyun QIU ; Yang ZHENG ; Shuang WANG ; Wenyu LIU ; Fan FEI ; Heming CHENG ; Yi WANG ; Dong ZHOU ; Kejie HUANG ; Zhong CHEN ; Cenglin XU
Neuroscience Bulletin 2025;41(5):790-804
Approximately 30%-40% of epilepsy patients do not respond well to adequate anti-seizure medications (ASMs), a condition known as pharmacoresistant epilepsy. The management of pharmacoresistant epilepsy remains an intractable issue in the clinic. Its early prediction is important for prevention and diagnosis. However, it still lacks effective predictors and approaches. Here, a classical model of pharmacoresistant temporal lobe epilepsy (TLE) was established to screen pharmacoresistant and pharmaco-responsive individuals by applying phenytoin to amygdaloid-kindled rats. Ictal electroencephalograms (EEGs) recorded before phenytoin treatment were analyzed. Based on ictal EEGs from pharmacoresistant and pharmaco-responsive rats, a convolutional neural network predictive model was constructed to predict pharmacoresistance, and achieved 78% prediction accuracy. We further found the ictal EEGs from pharmacoresistant rats have a lower gamma-band power, which was verified in seizure EEGs from pharmacoresistant TLE patients. Prospectively, therapies targeting the subiculum in those predicted as "pharmacoresistant" individual rats significantly reduced the subsequent occurrence of pharmacoresistance. These results demonstrate a new methodology to predict whether TLE individuals become resistant to ASMs in a classic pharmacoresistant TLE model. This may be of translational importance for the precise management of pharmacoresistant TLE.
Epilepsy, Temporal Lobe/diagnosis*
;
Animals
;
Drug Resistant Epilepsy/drug therapy*
;
Electroencephalography/methods*
;
Rats
;
Anticonvulsants/pharmacology*
;
Neural Networks, Computer
;
Male
;
Humans
;
Phenytoin/pharmacology*
;
Adult
;
Disease Models, Animal
;
Female
;
Rats, Sprague-Dawley
;
Young Adult
;
Convolutional Neural Networks
7.Expert consensus on orthodontic treatment of patients with periodontal disease.
Wenjie ZHONG ; Chenchen ZHOU ; Yuanyuan YIN ; Ge FENG ; Zhihe ZHAO ; Yaping PAN ; Yuxing BAI ; Zuolin JIN ; Yan XU ; Bing FANG ; Yi LIU ; Hong HE ; Faming CHEN ; Weiran LI ; Shaohua GE ; Ang LI ; Yi DING ; Lili CHEN ; Fuhua YAN ; Jinlin SONG
International Journal of Oral Science 2025;17(1):27-27
Patients with periodontal disease often require combined periodontal-orthodontic interventions to restore periodontal health, function, and aesthetics, ensuring both patient satisfaction and long-term stability. Managing these patients involving orthodontic tooth movement can be particularly challenging due to compromised periodontal soft and hard tissues, especially in severe cases. Therefore, close collaboration between orthodontists and periodontists for comprehensive diagnosis and sequential treatment, along with diligent patient compliance throughout the entire process, is crucial for achieving favorable treatment outcomes. Moreover, long-term orthodontic retention and periodontal follow-up are essential to sustain treatment success. This expert consensus, informed by the latest clinical research and practical experience, addresses clinical considerations for orthodontic treatment of periodontal patients, delineating indications, objectives, procedures, and principles with the aim of providing clear and practical guidance for clinical practitioners.
Humans
;
Consensus
;
Orthodontics, Corrective/standards*
;
Periodontal Diseases/complications*
;
Tooth Movement Techniques/methods*
;
Practice Guidelines as Topic
8.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*
9.Pharmacokinetics of Esketamine hydrochloride nasal spray in rats and ciliary toxicity to maxillary mucosa of bullfrog
Jingyu ZHOU ; Haixia WU ; Jingnan QUAN ; Yanna YANG ; Shijie ZHONG ; Yi CHENG ; Meng LI ; Zengming WANG ; Nan LIU ; Aiping ZHENG ; Hui ZHANG
China Pharmacy 2024;35(10):1174-1178
OBJECTIVE To study the pharmacokinetics of Esketamine hydrochloride nasal spray in rats and ciliary toxicity to maxillary mucosa of bullfrog. METHODS The plasma concentration of esketamine hydrochloride in rats was determined by LC-MS/ MS after intravenous injection of esketamine hydrochloride solution and nasal administration of esketamine hydrochloride; the pharmacokinetic parameters were calculated by using Phoenix WinNonlin 8.1.0 software. Using the maxillary mucosa of isolated bullfrog as a model, the morphological changes of maxillary mucosa were investigated, and the duration and recovery of ciliary oscillation were recorded after nasal administration of esketamine hydrochloride. RESULTS The peak of blood concentration occurred 2 min after nasal administration of esketamine hydrochloride; cmax was (814.58±418.80) ng/mL, AUC0-∞ was (203.75± 92.76) ng·h/mL, and the absolute bioavailability was 60.68%. After nasal administration of esketamine hydrochloride, it was observed that the cilia of bullfrog were arranged neatly, the edges were clear, the cilia tissue structure was complete and the cilia moved actively. The cilia movement time was (178.17±13.30) min for the first time, and after the cilia moved again, the ciliary movement time measured again was (24.50±9.19)min with a relative movement percentage of 53.56%. CONCLUSIONS Esketamine hydrochloride nasal spray has a rapid onset of action, high bioavailability, and low ciliary toxicity.
10.Ketamine Upregulates the Glutamatergic Synaptic Pathway and Induces Zebrafish Addiction
Song QIAN ; Si-Qi ZHU ; Jin-Zhong XU ; Cheng-Yu FANG ; Yin-Ze CHAI ; Yang LUO ; Kai WANG ; Yi-Zhou LIU
Chinese Journal of Biochemistry and Molecular Biology 2024;40(8):1153-1160
Ketamine,an antagonist of the glutamate N-methyl-D-aspartate(NMDA)receptor,is cur-rently one of the most widely abused psychoactive substances.Prolonged abuse can result in damages to various systems in the body,making it crucial to investigate the regulatory mechanism of ketamine addic-tion and screening related biomarkers.In this study,zebrafish embryos/larvae were initially exposed a-cutely to ketamine.Then,a ketamine addiction model was established in 6-month-old zebrafish through conditioned place preference(CPP)experiments.The zebrafish brain transcriptome was analyzed using RNA-seq,while qPCR and Western blotting were employed to detect the expression of key genes.Results revealed significant reductions in the spontaneous tail coiling,embryo hatching rate,and survival rate of zebrafish embryos in the ketamine-treated group compared to the control group.The distance moved also decreased significantly,from 1904.2 mm in the control group to 319.0 mm in the high dose of ketamine group(300 μmol/L).Conditional positional preference experiments demonstrated that the control ze-brafish did not exhibit significant changes in activity in the CPP tank.In contrast,the ketamine-treated group increased their activity time in the light zone of the tank from 385.2 s before training to 706.4 s af-ter training,representing a 26.8%increase(***P<0.001).This suggests a preference for ketamine stimulation in zebrafish.KEGG analysis indicated enrichment of differentially expressed genes in the neu-roactive ligand-receptor interaction pathway in the ketamine-treated samples.GSEA analysis further re-veals a significant upregulation of the glutamatergic synapse pathway(NES=1.5).In addition,compared with the control group,the mRNA levels of Grin2b and Gria2 in the ketamine group increased by 4.6 and 1.4 times,respectively,while the protein levels increased by 2.0 and 1.4 times,respectively.These findings suggest that ketamine can induce addiction in zebrafish,potentially through upregulation of the glutamatergic synaptic pathway.

Result Analysis
Print
Save
E-mail