1.Research progress in small molecule inhibitors of complement factor B
Shuai WEN ; Yao ZHAO ; Yan WANG ; Xing LI ; Yi MOU ; Zheng-yu JIANG
Acta Pharmaceutica Sinica 2025;60(1):37-47
The alternative pathway (AP) of the complement system is a key contributor to the pathogenesis of several diseases including paroxysmal nocturnal hemoglobinuria (PNH), atypical hemolytic uremic syndrome (aHUS), C3 glomerular disease (C3G) and age-related macular degeneration (AMD). Complement factor B (CFB) is a trypsin-like serine protein that circulates in the human bloodstream in a latent form. As a key node of the alternative pathway, it is an important target for the treatment of diseases mediated by the complement system. With the successful launch of iptacopan, the CFB small molecule inhibitors has become a current research hotspot, a number of domestic and foreign pharmaceutical companies are actively developing CFB small molecule inhibitors. In this paper, the research progress of CFB small molecule inhibitors in recent years is systematically summarized, the representative compounds and their activities are introduced according to structural types and design ideas, so as to provide reference and ideas for the subsequent research on CFB small molecule inhibitors.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Analgesic effect of dezocine combined with ropivacaine on patients undergoing thoracoscopic radical resection of lung cancer
Zhi-Guo YI ; Wen ZHOU ; Yan-Ping SU ; Fang TANG ; Jian-Dong DENG
The Chinese Journal of Clinical Pharmacology 2024;40(8):1116-1120
Objective To explore the analgesic effect of different doses of dezocine combined with ropivacaine for thoracic paravertebral block(TPVB)on patients undergoing thoracoscopic radical resection of lung cancer and the influence on hemodynamics and immune function of patients.Methods Patients with lung cancer who underwent thoracoscopic radical resection were divided into low-dose group and high-dose group according to random number table method.Both groups of patients were given total intravenous anesthesia to complete the surgery.At 15 min before general anesthesia induction,the low-dose group was given TPBV with 0.1 mg·kg-1 dezocine+0.375%ropivacaine for a total of 20 mL,and the high-dose group was given TPBV with 0.15 mg·kg-1 dezocine+0.375%ropivacaine for a total of 20 mL.Comparisons were performed on both groups in terms of analgesic effect,hemodynamic parameters,immune function and occurrence of adverse drug reactions.Results There were 48 cases in low-dose group and 46 cases in high-dose group.In low-dose group,the heart rate values before TPVB,before skin incision,at 5 min after sectioning and at the end of surgery were(78.52±6.54),(70.79±7.07),(74.48±6.68)and(76.69±7.29)beat·min-1,the mean arterial pressure values were(93.16±5.72),(86.38±7.51),(92.15±6.36)and(91.14±6.13)mmHg.In high-dose group,the heart rate values at the above time points were(79.36±7.11),(71.68±6.49),(74.76±7.06)and(76.57±6.52)beat·min-1;the mean arterial pressure values were(93.89±7.18),(85.27±7.41),(90.34±6.52)and(92.43±6.34)mmHg,there were no statistical differences between the two groups(all P>0.05).The resting state scores at 2,6 and 12 h after surgery were(1.38±0.19),(1.54±0.21)and(1.72±0.16)points,the pain scores at motion state were(1.88±0.15),(2.36±0.37)and(3.26±0.38)points in low-dose group;in high-dose group,the resting state scores were(1.32±0.17),(1.58±0.22)and(1.81±0.18)points,the pain scores at motion state were(1.81±0.13),(2.11±0.31)and(3.03±0.36)points,respectively,there were no statistical differences between the two groups(all P>0.05).The number of analgesic pump compressions at 24 h after surgery and the number of cases with analgesic remedy were(5.12±1.26)times and 15 cases in low-dose group and were(4.74±1.03)times and 10 cases in high-dose group,with no statistical differences between the groups(all P>0.05).The percentages of CD3+cells in low-dose group at the end of surgery and at 12 h and 24 h after surgery were(68.51±6.76)%,(54.22±5.43)%and(51.47±6.58)%,the percentages of CD4+cells were(40.29±5.02)%,(34.94±4.79)%and(30.48±5.11)%,CD4+/CD8+ratios were 1.54±0.34,1.36±0.28 and 1.16±0.23;the percentages of CD3+cells in high-dose group were(67.92±7.11)%,(56.58±6.36)%and(54.47±6.89)%,percentages of CD4+cells were(41.33±5.75)%,(35.86±5.21)%and(32.27±4.78)%,the CD4+/CD8+were 1.53±0.35,1.40±0.30 and 1.22±0.26,all with no significant difference(all P>0.05).The incidence of postoperative adverse drug reactions in high-dose group and low-dose group were 32.61%and 14.58%,with significant difference(P<0.05).Conclusion When TPVB regimen of dezocine combined with ropivacaine is used in thoracoscopic radical resection of lung cancer,the analgesic effect of low-dose dezocine is comparable to that of high-dose dezocine,with lower risk of adverse drug reactions.
8.Research status of quercetin-mediated MAPK signaling pathway in prevention and treatment of osteoporosis
Ke-Xin YUAN ; Xing-Wen XIE ; Ding-Peng LI ; Yi-Sheng JING ; Wei-Wei HUANG ; Xue-Tao WANG ; Hao-Dong YANG ; Wen YAN ; Yong-Wu MA
The Chinese Journal of Clinical Pharmacology 2024;40(9):1375-1379
Quercetin can mediate the activation of mitogen-activated protein kinase(MAPK)signaling pathways to prevent osteoporosis(OP).This paper comprehensively discusses the interrelationship between MAPK and osteoporosis-related cells based on the latest domestic and international research.Additionally,it elucidates the research progress of quercetin in mediating the MAPK signaling pathway for OP prevention.The aim is to provide an effective foundation for the clinical prevention and treatment of OP and the in-depth development of quercetin.
9.Remote Virtual Companion via Tactile Codes and Voices for The People With Visual Impairment
Song GE ; Xuan-Tuo HUANG ; Yan-Ni LIN ; Yan-Cheng LI ; Wen-Tian DONG ; Wei-Min DANG ; Jing-Jing XU ; Ming YI ; Sheng-Yong XU
Progress in Biochemistry and Biophysics 2024;51(1):158-176
ObjectiveExisting artificial vision devices can be divided into two types: implanted devices and extracorporeal devices, both of which have some disadvantages. The former requires surgical implantation, which may lead to irreversible trauma, while the latter has some defects such as relatively simple instructions, limited application scenarios and relying too much on the judgment of artificial intelligence (AI) to provide enough security. Here we propose a system that has voice interaction and can convert surrounding environment information into tactile commands on head and neck. Compared with existing extracorporeal devices, our device can provide a larger capacity of information and has advantages such as lower cost, lower risk, suitable for a variety of life and work scenarios. MethodsWith the latest remote wireless communication and chip technologies, microelectronic devices, cameras and sensors worn by the user, as well as the huge database and computing power in the cloud, the backend staff can get a full insight into the scenario, environmental parameters and status of the user remotely (for example, across the city) in real time. In the meanwhile, by comparing the cloud database and in-memory database and with the help of AI-assisted recognition and manual analysis, they can quickly develop the most reasonable action plan and send instructions to the user. In addition, the backend staff can provide humanistic care and emotional sustenance through voice dialogs. ResultsThis study originally proposes the concept of “remote virtual companion” and demonstrates the related hardware and software as well as test results. The system can not only achieve basic guide functions, for example, helping a person with visual impairment to shop in supermarkets, find seats at cafes, walk on the streets, construct complex puzzles, and play cards, but also can meet the demand for fast-paced daily tasks such as cycling. ConclusionExperimental results show that this “remote virtual companion” is applicable for various scenarios and demands. It can help blind people with their travels, shopping and entertainment, or accompany the elderlies with their trips, wilderness explorations, and travels.
10.Relationship between GLI1 expression and tumor immune infiltration and clinical prognosis of gastric cancer
Wen-Shuai ZHU ; Jing-Guo SUN ; Yi LU ; Mu-Hua LUAN ; Xiao-Li MA ; Yan-Fei JIA
Chinese Journal of Current Advances in General Surgery 2024;27(1):8-13
Objective:To investigate the correlation between the expression of GLI1 and im-mune invasion and clinical prognosis in gastric cancer.To study the effect of GLI1 expression on drug resistance in gastric cancer.Methods:The expression difference of GLI1 in gastric cancer and normal tissues was analyzed by using TCGA database,and the effect of clinical features and GLI1 gene ex-pression level on prognosis of patients with gastric cancer was analyzed.The correlation between GLI1 gene expression and tumor immune cell infiltration in gastric cancer tissues was analyzed to explore its influence on drug resistance of chemotherapy drugs and targeted drugs.Clinical samples were collect-ed to analyze the difference of GLI1 expression in gastric cancer and paracancer tissues.Results:The expression of GLI1 in gastric cancer tissues was 1.7 times that in normal tissues,and the overall sur-vival and disease-free survival of patients with high expression are shorter than those with low ex-pression(P<0.05).The interstitial score,immune score and abundance of immunoinfiltrating cells were higher in the high expression of GLI1 in gastric cancer tissues.High expression of GLI1 reduces drug sensitivity and is positively correlated with the expression of immune checkpoint markers PDCD1(P<0.05).GLI1 expression was significantly increased in patients with subdifferentiated gastric cancer.Conclusions:GLI1 expression is associated with the prognosis and immune infiltration of patients with gastric cancer,and it may lead to poor prognosis of patients by regulating chemotherapy resis-tance,which may be a potential therapeutic target and molecular marker for gastric cancer.

Result Analysis
Print
Save
E-mail