2.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
3.Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models
Min HU ; Lexuan DONG ; Yi GAO ; Ziqi XI ; Zihao SHEN ; Ruiyang TANG ; Xin LUAN ; Min TANG ; Weidong ZHANG
Laboratory Animal and Comparative Medicine 2025;45(3):318-330
Animal experiments are widely used in biomedical research for safety assessment, toxicological analysis, efficacy evaluation, and mechanism exploration. In recent years, the ethical review system has become more stringent, and awareness of animal welfare has continuously increased. To promote more efficient and cost-effective drug research and development, the United States passed the Food and Drug Administration (FDA) Modernization Act 2.0 in September 2022, which removed the federal mandate requiring animal testing in preclinical drug research. In April 2025, the FDA further proposed to adopt a series of "new alternative methods" in the research and development of drugs such as monoclonal antibodies, which included artificial intelligence computing models, organoid toxicity tests, and 3D micro-physiological systems, thereby gradually phasing out traditional animal experiment models. Among these cutting-edge technologies, 3D bioprinting models are a significant alternative and complement to animal models, owing to their high biomimetic properties, reproducibility, and scalability. This review provides a comprehensive overview of advancements and applications of 3D bioprinting technology in the fields of biomedical and pharmaceutical research. It starts by detailing the essential elements of 3D bioprinting, including the selection and functional design of biomaterials, along with an explanation of the principles and characteristics of various printing strategies, highlighting the advantages in constructing complex multicellular spatial structures, regulating microenvironments, and guiding cell fate. It then discusses the typical applications of 3D bioprinting in drug research and development,including high-throughput screening of drug efficacy by constructing disease models such as tumors, infectious diseases, and rare diseases, as well as conducting drug toxicology research by building organ-specific models such as those of liver and heart. Additionally,the review examines the role of 3D bioprinting in tissue engineering, discussing its contributions to the construction of functional tissues such as bone, cartilage, skin, and blood vessels, as well as the latest progress in regeneration and replacement. Furthermore, this review analyzes the complementary advantages of 3D bioprinting models and animal models in the research of disease progression, drug mechanisms, precision medicine, drug development, and tissue regeneration, and discusses the potential and challenges of their integration in improving model accuracy and physiological relevance. In conclusion, as a cutting-edge in vitro modeling and manufacturing technology, 3D bioprinting is gradually establishing a comprehensive application system covering disease modeling, drug screening, toxicity prediction, and tissue regeneration.
4.Predictive Value of MIC Typing for IDH1/2 Mutations in Patients with Acute Myeloid Leukemia.
Hui-Juan CHEN ; Yang-Ling SHEN ; Yan-Ting GUO ; Yi-Fang ZHOU ; Ying-Jie MIAO ; Wei-Min DONG ; Wei-Ying GU
Journal of Experimental Hematology 2025;33(4):939-944
OBJECTIVE:
To investigate the predictive value of morphology, immunology, and cytogenetics for isocitrate dehydrogenase 1 and 2 (IDH1/2) gene mutation in newly diagnosed acute myeloid leukemia (AML) patients.
METHODS:
The clinical data of 186 newly diagnosed AML patients (except M3 subtype) in the First People's Hospital of Changzhou were retrospectively analyzed, and the variables associated with IDH1/2 mutation in patients were screened using LASSO regression to construct a multivariate logistic regression analysis model. The Bootstrap method was used for internal validation of the model and nomograms were used to visualize the model, and receiver operating characteristic (ROC) curve was used to evaluate the predictive performance of the model.
RESULTS:
A total of 60 AML patients had IDH1/2 mutation at initial diagnosis. LASSO regression screened 9 predictive variables associated with IDH1/2 mutation, including CD7, CD56, CD11b, CD15, CD64, HLA-DR, platelet count≥50×109/L, isolated +8 and normal karyotype. The nomogram and ROC curve were plotted based on the above 9 variables. The area under the ROC curve (AUC) of the training set and the validation set were 0.871 and 0.806, respectively. Internal validation showed that the nomogram had good predictive ability.
CONCLUSION
The prediction model based on MIC typing constructed in this study has a good predictive ability for the presence of IDH1/2 mutations in newly diagnosed AML patients and has important clinical application value when the gene mutation detection results are unavailable.
Humans
;
Isocitrate Dehydrogenase/genetics*
;
Leukemia, Myeloid, Acute/genetics*
;
Mutation
;
Retrospective Studies
;
Nomograms
;
Female
;
Male
;
ROC Curve
;
Middle Aged
5.Predictive value of bpMRI for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L.
Lai DONG ; Rong-Jie SHI ; Jin-Wei SHANG ; Zhi-Yi SHEN ; Kai-Yu ZHANG ; Cheng-Long ZHANG ; Bin YANG ; Tian-Bao HUANG ; Ya-Min WANG ; Rui-Zhe ZHAO ; Wei XIA ; Shang-Qian WANG ; Gong CHENG ; Li-Xin HUA
National Journal of Andrology 2025;31(5):426-431
Objective: The aim of this study is to explore the predictive value of biparametric magnetic resonance imaging(bpMRI)for pelvic lymph node metastasis in prostate cancer patients with PSA≤20 μg/L and establish a nomogram. Methods: The imaging data and clinical data of 363 patients undergoing radical prostatectomy and pelvic lymph node dissection in the First Affiliated Hospital of Nanjing Medical University from July 2018 to December 2023 were retrospectively analyzed. Univariate analysis and multivariate logistic regression were used to screen independent risk factors for pelvic lymph node metastasis in prostate cancer, and a nomogram of the clinical prediction model was established. Calibration curves were drawn to evaluate the accuracy of the model. Results: Multivariate logistic regression analysis showed extrocapusular extension (OR=8.08,95%CI=2.62-24.97, P<0.01), enlargement of pelvic lymph nodes (OR=4.45,95%CI=1.16-17.11,P=0.030), and biopsy ISUP grade(OR=1.97,95%CI=1.12-3.46, P=0.018)were independent risk factors for pelvic lymph node metastasis. The C-index of the prediction model was 0.834, which indicated that the model had a good prediction ability. The actual value of the model calibration curve and the prediction probability of the model fitted well, indicating that the model had a good accuracy. Further analysis of DCA curve showed that the model had good clinical application value when the risk threshold ranged from 0.05 to 0.70.Conclusion: For prostate cancer patients with PSA≤20 μg/L, bpMRI has a good predictive value for the pelvic lymph node metastasis of prostate cancer with extrocapusular extension, enlargement of pelvic lymph nodes and ISUP grade≥4.
Humans
;
Male
;
Prostatic Neoplasms/diagnostic imaging*
;
Lymphatic Metastasis
;
Retrospective Studies
;
Nomograms
;
Prostate-Specific Antigen/blood*
;
Lymph Nodes/pathology*
;
Pelvis
;
Predictive Value of Tests
;
Prostatectomy
;
Lymph Node Excision
;
Risk Factors
;
Magnetic Resonance Imaging
;
Logistic Models
;
Middle Aged
;
Aged
6.Berg Balance Scale score is a valuable predictor of all-cause mortality among acute decompensated heart failure patients.
Yu-Xuan FAN ; Jing-Jing CHENG ; Zhi-Qing FAN ; Jing-Jin LIU ; Wen-Juan XIU ; Meng-Yi ZHAN ; Lin LUO ; Guang-He LI ; Le-Min WANG ; Yu-Qin SHEN
Journal of Geriatric Cardiology 2025;22(6):555-562
OBJECTIVE:
To investigate possible associations between physical function assessment scales, such as Short Physical Performance Battery (SPPB) and Berg Balance Scale (BBS), with all-cause mortality in acute decompensated heart failure (ADHF) patients.
METHODS:
A total of 108 ADHF patients were analyzed from October 2020 to October 2022, and followed up to May 2023. The association between baseline clinical characteristics and all-cause mortality was analyzed by univariate Cox regression analysis, while for SPPB and BBS, univariate Cox regression analysis was followed by receiver operating characteristic curves, in which the area under the curve represented their predictive accuracy for all-cause mortality. Incremental predictive values for both physical function assessments were measured by calculating net reclassification index and integrated discrimination improvement scores. Optimal cut-off value for BBS was then identified using restricted cubic spline plots, and survival differences below and above that cut-off were compared using Kaplan-Meier survival curves and the log-rank test. The clinical utility of BBS was measured using decision curve analysis.
RESULTS:
For baseline characteristics, age, female, blood urea nitrogen, as well as statins, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, or angiotensin receptor-neprilysin inhibitors, were predictive for all-cause mortality for ADHF patients. With respect to SPPB and BBS, higher scores were associated with lower all-cause mortality rates for both assessments; similar area under the curves were measured for both (0.774 for SPPB and 0.776 for BBS). Furthermore, BBS ≤ 36.5 was associated with significantly higher mortality, which was still applicable even adjusting for confounding factors; BBS was also found to have great clinical utility under decision curve analysis.
CONCLUSIONS
BBS or SPPB could be used as tools to assess physical function in ageing ADHF patients, as well as prognosticate on all-cause mortality. Moreover, prioritizing the improvement of balance capabilities of ADHF patients in cardiac rehabilitation regimens could aid in lowering mortality risk.
7.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
8.Comprehensive Analysis of Oncogenic, Prognostic, and Immunological Roles of FANCD2 in Hepatocellular Carcinoma: A Potential Predictor for Survival and Immunotherapy.
Meng Jiao XU ; Wen DENG ; Ting Ting JIANG ; Shi Yu WANG ; Ru Yu LIU ; Min CHANG ; Shu Ling WU ; Ge SHEN ; Xiao Xue CHEN ; Yuan Jiao GAO ; Hongxiao HAO ; Lei Ping HU ; Lu ZHANG ; Yao LU ; Wei YI ; Yao XIE ; Ming Hui LI
Biomedical and Environmental Sciences 2025;38(3):313-327
OBJECTIVE:
Hepatocellular carcinoma (HCC) is sensitive to ferroptosis, a new form of programmed cell death that occurs in most tumor types. However, the mechanism through which ferroptosis modulates HCC remains unclear. This study aimed to investigate the oncogenic role and prognostic value of FANCD2 and provide novel insights into the prognostic assessment and prediction of immunotherapy.
METHODS:
Using clinicopathological parameters and bioinformatic techniques, we comprehensively examined the expression of FANCD2 macroscopically and microcosmically. We conducted univariate and multivariate Cox regression analyses to identify the prognostic value of FANCD2 in HCC and elucidated the detailed molecular mechanisms underlying the involvement of FANCD2 in oncogenesis by promoting iron-related death.
RESULTS:
FANCD2 was significantly upregulated in digestive system cancers with abundant immune infiltration. As an independent risk factor for HCC, a high FANCD2 expression level was associated with poor clinical outcomes and response to immune checkpoint blockade. Gene set enrichment analysis revealed that FANCD2 was mainly involved in the cell cycle and CYP450 metabolism.
CONCLUSION
To the best of our knowledge, this is the first study to comprehensively elucidate the oncogenic role of FANCD2. FANCD2 has a tumor-promoting aspect in the digestive system and acts as an independent risk factor in HCC; hence, it has recognized value for predicting tumor aggressiveness and prognosis and may be a potential biomarker for poor responsiveness to immunotherapy.
Humans
;
Carcinoma, Hepatocellular/diagnosis*
;
Liver Neoplasms/diagnosis*
;
Immunotherapy
;
Fanconi Anemia Complementation Group D2 Protein/metabolism*
;
Prognosis
;
Male
;
Female
;
Middle Aged
;
Biomarkers, Tumor/metabolism*
9.Association of Body Mass Index with All-Cause Mortality and Cause-Specific Mortality in Rural China: 10-Year Follow-up of a Population-Based Multicenter Prospective Study.
Juan Juan HUANG ; Yuan Zhi DI ; Ling Yu SHEN ; Jian Guo LIANG ; Jiang DU ; Xue Fang CAO ; Wei Tao DUAN ; Ai Wei HE ; Jun LIANG ; Li Mei ZHU ; Zi Sen LIU ; Fang LIU ; Shu Min YANG ; Zu Hui XU ; Cheng CHEN ; Bin ZHANG ; Jiao Xia YAN ; Yan Chun LIANG ; Rong LIU ; Tao ZHU ; Hong Zhi LI ; Fei SHEN ; Bo Xuan FENG ; Yi Jun HE ; Zi Han LI ; Ya Qi ZHAO ; Tong Lei GUO ; Li Qiong BAI ; Wei LU ; Qi JIN ; Lei GAO ; He Nan XIN
Biomedical and Environmental Sciences 2025;38(10):1179-1193
OBJECTIVE:
This study aimed to explore the association between body mass index (BMI) and mortality based on the 10-year population-based multicenter prospective study.
METHODS:
A general population-based multicenter prospective study was conducted at four sites in rural China between 2013 and 2023. Multivariate Cox proportional hazards models and restricted cubic spline analyses were used to assess the association between BMI and mortality. Stratified analyses were performed based on the individual characteristics of the participants.
RESULTS:
Overall, 19,107 participants with a sum of 163,095 person-years were included and 1,910 participants died. The underweight (< 18.5 kg/m 2) presented an increase in all-cause mortality (adjusted hazards ratio [ aHR] = 2.00, 95% confidence interval [ CI]: 1.66-2.41), while overweight (≥ 24.0 to < 28.0 kg/m 2) and obesity (≥ 28.0 kg/m 2) presented a decrease with an aHR of 0.61 (95% CI: 0.52-0.73) and 0.51 (95% CI: 0.37-0.70), respectively. Overweight ( aHR = 0.76, 95% CI: 0.67-0.86) and mild obesity ( aHR = 0.72, 95% CI: 0.59-0.87) had a positive impact on mortality in people older than 60 years. All-cause mortality decreased rapidly until reaching a BMI of 25.7 kg/m 2 ( aHR = 0.95, 95% CI: 0.92-0.98) and increased slightly above that value, indicating a U-shaped association. The beneficial impact of being overweight on mortality was robust in most subgroups and sensitivity analyses.
CONCLUSION
This study provides additional evidence that overweight and mild obesity may be inversely related to the risk of death in individuals older than 60 years. Therefore, it is essential to consider age differences when formulating health and weight management strategies.
Humans
;
Body Mass Index
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Prospective Studies
;
Rural Population/statistics & numerical data*
;
Aged
;
Follow-Up Studies
;
Adult
;
Mortality
;
Cause of Death
;
Obesity/mortality*
;
Overweight/mortality*
10.GPR40 novel agonist SZZ15-11 regulates glucolipid metabolic disorders in spontaneous type 2 diabetic KKAy mice
Lei LEI ; Jia-yu ZHAI ; Tian ZHOU ; Quan LIU ; Shuai-nan LIU ; Cai-na LI ; Hui CAO ; Cun-yu FENG ; Min WU ; Lei-lei CHEN ; Li-ran LEI ; Xuan PAN ; Zhan-zhu LIU ; Yi HUAN ; Zhu-fang SHEN
Acta Pharmaceutica Sinica 2024;59(10):2782-2790
G protein-coupled receptor (GPR) 40, as one of GPRs family, plays a potential role in regulating glucose and lipid metabolism. To study the effect of GPR40 novel agonist SZZ15-11 on hyperglycemia and hyperlipidemia and its potential mechanism, spontaneous type 2 diabetic KKAy mice, human hepatocellular carcinoma HepG2 cells and murine mature adipocyte 3T3-L1 cells were used. KKAy mice were divided into four groups, vehicle group, TAK group, SZZ (50 mg·kg-1) group and SZZ (100 mg·kg-1) group, with oral gavage of 0.5% sodium carboxymethylcellulose (CMC), 50 mg·kg-1 TAK875, 50 and 100 mg·kg-1 SZZ15-11 respectively for 45 days. Fasting blood glucose, blood triglyceride (TG) and total cholesterol (TC), non-fasting blood glucose were tested. Oral glucose tolerance test and insulin tolerance test were executed. Blood insulin and glucagon were measured

Result Analysis
Print
Save
E-mail