1.Terms Related to The Study of Biomacromolecular Condensates
Ke RUAN ; Xiao-Feng FANG ; Dan LI ; Pi-Long LI ; Yi LIN ; Zheng WANG ; Yun-Yu SHI ; Ming-Jie ZHANG ; Hong ZHANG ; Cong LIU
Progress in Biochemistry and Biophysics 2025;52(4):1027-1035
Biomolecular condensates are formed through phase separation of biomacromolecules such as proteins and RNAs. These condensates exhibit liquid-like properties that can futher transition into more stable material states. They form complex internal structures via multivalent weak interactions, enabling precise spatiotemporal regulations. However, the use of inconsistent and non-standardized terminology has become increasingly problematic, hindering academic exchange and the dissemination of scientific knowledge. Therefore, it is necessary to discuss the terminology related to biomolecular condensates in order to clarify concepts, promote interdisciplinary cooperation, enhance research efficiency, and support the healthy development of this field.
2.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
3.Updates and amendments of the Chinese Pharmacopoeia 2025 Edition (Volume Ⅰ)
LI Hao ; SHEN Mingrui ; ZHANG Pang ; ZHAI Weimin ; NI Long ; HAO Bo ; ZHAO Yuxin ; HE Yi ; MA Shuangcheng ; SHU Rong
Drug Standards of China 2025;26(1):017-022
The Chinese Pharmacopoeia is the legal technical standard which should be followed during the research, production, use, and administration of drugs. At present, the new edition of the Chinese Pharmacopoeia is planned to be promulgated and implemented. This article summarizes and analyzes the main characteristics and the content of updates and amendments of the Chinese Pharmacopoeia 2025 Edition(Volume Ⅰ), to provide a reference for the correct understanding and accurate implementation the new edition of the pharmacopoeia.
4.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields.
5.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
6.Correlation between depressive symptom and traditional Chinese medicine constitution among school aged children and adolescents
Chinese Journal of School Health 2025;46(9):1222-1225
Objective:
To explore the correlation between traditional Chinese medicine (TCM) constitution and depressive symptom among school aged children and adolescents, so as to provide evidences for informing constitution based regulation and prevention of depressive symptom.
Methods:
From June to December 2024, a total of 4 729 students aged 6-14 were recruited by cluster random sampling from 10 primary schools in Baoding (Hebei Province), Heze and Liaocheng (Shandong Province). General information, TCM constitution and depressive symptom were collected. Restricted cubic spline (RCS) models were used to analyze related factors and threshold effects of depressive symptom. Binary Logistic regression was applied to examine the association between depressive symptom and TCM constitution, with subgroup analyses conducted.
Results:
The detection rate of depressive symptom among the included children and adolescents was 25.82%. RCS analyses indicated non linear associations between depressive symptom and age (inflection point at 10 years old), bedtime (inflection point at 22:00), and wake up time (inflection point at 6:30 ) (all P non linearity <0.01). Linear associations were observed with body mass index (BMI) and sleep duration (all P non linearity > 0.05 ). After adjusting for covariates such as age, BMI and sleep status, binary Logistic regression analyses showed that Yin deficient constitution ( OR =1.26, 95% CI =1.09-1.45) and Phlegm-dampness constitution ( OR =1.42, 95% CI =1.11-1.82) were significantly associated with depressive symptom among children and adolescents (all P <0.05).
Conclusions
Depressive symptom among school aged children and adolescents is primarily associated with Yin deficiency and Phlegm dampness constitutions in TCM constitution. Active attention should be paid to susceptible TCM constitution among children and adolescents. Targeted health guidance and interventions should be implemented to improve TCM constitution health status for preventing the occurrence of depressive symptom.
7.Oxidative Stress-related Signaling Pathways and Antioxidant Therapy in Alzheimer’s Disease
Li TANG ; Yun-Long SHEN ; De-Jian PENG ; Tian-Lu RAN ; Zi-Heng PAN ; Xin-Yi ZENG ; Hui LIU
Progress in Biochemistry and Biophysics 2025;52(10):2486-2498
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline, functional impairment, and neuropsychiatric symptoms. It represents the most prevalent form of dementia among the elderly population. Accumulating evidence indicates that oxidative stress plays a pivotal role in the pathogenesis of AD. Notably, elevated levels of oxidative stress have been observed in the brains of AD patients, where excessive reactive oxygen species (ROS) can cause extensive damage to lipids, proteins, and DNA, ultimately compromising neuronal structure and function. Amyloid β‑protein (Aβ) has been shown to induce mitochondrial dysfunction and calcium overload, thereby promoting the generation of ROS. This, in turn, exacerbates Aβ aggregation and enhances tau phosphorylation, leading to the formation of two pathological features of AD: extracellular Aβ plaque deposition and intracellular neurofibrillary tangles (NFTs). These events ultimately culminate in neuronal death, forming a vicious cycle. The interplay between oxidative stress and these pathological processes constitutes a core link in the pathogenesis of AD. The signaling pathways mediating oxidative stress in AD include Nrf2, RCAN1, PP2A, CREB, Notch1, NF‑κB, ApoE, and ferroptosis. Nrf2 signaling pathway serves as a key regulator of cellular redox homeostasis, exerts important antioxidant capacity and protective effects in AD. RCAN1 signaling pathway, as a calcineurin inhibitor, and modulates AD progression through multiple mechanisms. PP2A signaling pathway is involved in regulating tau phosphorylation and neuroinflammation processes. CREB signaling pathway contributes to neuroplasticity and memory formation; activation of CREB improves cognitive function and reduce oxidative stress. Notch1 signaling pathway regulates neuronal development and memory, participates in modulation of Aβ production, and interacts with Nrf2 toco-regulate antioxidant activity. NF‑κB signaling pathway governs immune and inflammatory responses; sustained activation of this pathway forms “inflammatory memory”, thereby exacerbating AD pathology. ApoE signaling pathway is associated with lipid metabolism; among its isoforms, ApoE-ε4 significantly increases the risk of AD, leading to elevated oxidative stress, abnormal lipid metabolism, and neuroinflammation. The ferroptosis signaling pathway is driven by iron-dependent lipid peroxidation, and the subsequent release of lipid peroxidation products and ROS exacerbate oxidative stress and neuronal damage. These interconnected pathways form a complex regulatory network that regulates the progression of AD through oxidative stress and related pathological cascades. In terms of therapeutic strategies targeting oxidative stress, among the drugs currently used in clinical practice for AD treatment, memantine and donepezil demonstrate significant therapeutic efficacy and can improve the level of oxidative stress in AD patients. Some compounds with antioxidant effects (such asα-lipoic acid and melatonin) have shown certain potential in AD treatment research and can be used as dietary supplements to ameliorate AD symptoms. In addition, non-drug interventions such as calorie restriction and exercise have been proven to exerted neuroprotective effects and have a positive effect on the treatment of AD. By comprehensively utilizing the therapeutic characteristics of different signaling pathways, it is expected that more comprehensive multi-target combination therapy regimens and combined nanomolecular delivery systems will be developed in the future to bypass the blood-brain barrier, providing more effective therapeutic strategies for AD.
8.Exploring mechanism of action and validation of key regulatory pathways of selenshenzhi prescription in treatment of esophageal cancer based on network pharmacology
Ke-Yi JI ; Su-Hui WU ; Jia-Yao YUAN ; Han-Bing LI ; Shun-Cai WANG ; Long-Jie WANG ; Lin-Lin WANG ; Qi-Long GAO
Chinese Pharmacological Bulletin 2024;40(11):2174-2184
Aim To study the main active components and potential mechanism of selenshenzhi prescription a-gainst esophageal cancer by network pharmacology and in vivo and in vitro experiments.Methods The com-mon target was extracted from TCMSP,OMIM and GeneCards databases,and the PPI network was con-structed using STRING database.DAVID database was used for GO and KEGG enrichment analysis,and a network was constructed based on STRING and DAVID database for in vivo and in vitro experimental verifica-tion.Results Prediction results showed that a total of 100 active ingredients and 749 related targets were ob-tained,and 168 common targets were obtained between selenoshenzhi recipe and esophageal cancer,which were involved in the PI3K-AKT signaling pathway and proteoglycan signaling pathways in cancer.Selenshenz-hi prescription was used to conduct preliminary verifi-cation of related targets for human esophageal cancer EC9706 based on in vitro experiments.The results showed that selenshenzhi prescription could significantly inhibit the proliferation of esophageal cancer cells and induce the apoptosis of EC9706 through the expression of Bax,Bcl-2,caspase-3 and other key apoptotic pro-teins.Lastly,the core target and pathway of selensh-enzhi prescription were preliminically verified based on in vivo animal experiments on nude mice with esopha-geal cancer.The results showed that selenshenzhi pre-scription could significantly inhibit tumor proliferation,promote tumor cell apoptosis,and induce tumor apop-tosis by regulating the expression of key proteins on PI3K/AKT signaling pathway.Conclusions Selensh-enzhi prescription can control the occurrence and de-velopment of esophageal cancer through the synergistic effect of multi-components,multi-targets and multi-pathways,and provide a theoretical basis for further clinical investigation of the mechanism of selenshenzhi prescription in the treatment of esophageal cancer in the future.
9.The protective effect of licorice on cisplatin-induced liver injury in rats based on untargeted metabolomics study
Ting-Mei YIN ; Bi-Qian YANG ; Guang-Miao GAO ; Xiao-Yan FU ; Xiao-Long LIAN ; Ling-Ling YANG ; Jie LI ; Yi DENG
Chinese Pharmacological Bulletin 2024;40(12):2246-2255
Aim To study the mechanism of action of licorice in alleviating cisplatin liver injury.Methods Forty-eight SD rats were randomly divided into a blank group,a model group,a positive control group and lico-rice administration groups(450,900 and 1 800 mg·kg-1).After 5 days of prophylactic administration,8 mg·kg-1 of cisplatin was injected intraperitoneally in-to the model,positive control,and licorice administra-tion groups to establish an acute liver injury model.LC-MS/MS untargeted metabolomics was used to ana-lyze the differential metabolites and metabolic pathways of licorice to alleviate cisplatin acute liver injury.Re-sults PLS-DA score plots showed significant separa-tion of metabolomics samples.The analysis yielded 119 differential metabolites associated with cisplatin liver injury,of which 31 differential metabolites were signifi-cantly regressed after licorice intervention and were mainly involved in D-arginine and D-ornithine metabo-lism;parathyroid hormone synthesis,secretion,and ac-tion;tyrosine metabolism;biosynthesis of phenylala-nine,tyrosine,and tryptophan;β-alanine metabolism;and amino acid and nucleotide sugar metabolism.Con-clusions Metabolomics analysis indicates that licorice can alter the metabolic profile of cisplatin-induced he-patic injury rats,and its mechanism of action may be related to its improvement of the levels of differential metabolites and its involvement in the regulation of a-mino acid metabolism and other related pathways.
10.Effects of saphenous nerve combined with posterior capsular block of knee joint on stress response,analgesic effect and joint function recovery after total knee arthroplasty
Teng-Chen FENG ; Jia-Yi WANG ; Jie YAO ; Ji-Bo ZHAO ; Xiao-Jia SUN ; Fu-Long LI
Journal of Regional Anatomy and Operative Surgery 2024;33(6):509-513
Objective To investigate the effects of saphenous nerve combined with posterior capsular block of knee joint on stress response,analgesic effect and joint function recovery of patients after total knee arthroplasty.Methods A total of 98 patients who received total knee arthroplasty in our hospital from January 2021 to January 2022 were selected and divided into the observation group(received saphenous nerve combined with posterior capsular block of knee joint)and the control group(received saphenous nerve block)by random number table,with 49 patients in each group.The visual analogue scale(VAS)score of resting and dynamic pain 6 hours,12 hours and 24 hours after surgery of patients in the two groups were compared.The range of knee joint motion before surgery,3 days,5 days and 7 days after surgery of patients in the two groups were compared.The stress indexes[cortisol(Cor),adrenocorticotropic hormone(ACTH)],and pain mediator indexs[calcitonin gene-related peptide(CGRP),beta-endorphins(β-EP),6-keto prostaglandin E1α(6-Keto-pGE1α),substance P(SP)]before surgery,4 hours,12 hours,24 hours,and 48 hours after surgery of patients in the two groups were compared.The occurrence of adverse reactions during treatment of patients in the two groups were recorded.Results There were statistically significant differences in the resting and dynamic VAS scores at different time points of patients in the two groups in terms of time factors,inter-group factors and interaction factors(P<0.05).There were statistically significant differences in the range of knee joint motion at different time points of patients in the two groups in terms of time factors,inter-group factors and interaction factors(P<0.05).There were statistically significant differences in the Cor and ACTH contents at different time points of patients in the two groups in terms of time factors,inter-group factors and interaction factors(P<0.05).There were statistically significant differences in the contents of β-EP,SP,CGRP and 6-keto-PGE1α at different time points of patients in the two groups in terms of time factors,inter-group factors and interaction factors(P<0.05).There was no statistically significant difference in the incidence of adverse reactions between the two groups(P>0.05).Conclusion Saphenous nerve combined with posterior capsular block of knee joint for total knee arthroplasty can reduce patients' stress response,enhance postoperative analgesic effect,and improve the early motor function,with high safety.


Result Analysis
Print
Save
E-mail