1.Mechanism of Electroacupuncture Alleviating Inflammatory Pain in Rats by Regulating ErbB Subtypes in the Spinal Dorsal Horn
Yuxin WU ; Shuxin TIAN ; Zhengyi LYU ; Dingru JI ; Xingzhen LI ; Yue DONG ; Binyu ZHAO ; Yi LIANG ; Jianqiao FANG
Journal of Traditional Chinese Medicine 2026;67(1):69-78
ObjectiveTo observe the changes in the levels of different subtypes of epidermal growth factor receptor (ErbB), namely ErbB1, ErbB2, ErbB3, and ErbB4, in the spinal dorsal horn of inflammatory pain model rats, and to explore their mechanism of mediating hyperalgesia as well as the intervention mechanism of electroacupuncture at "Zusanli (ST 36)" and "Kunlun (BL 60)". MethodsThe study was divided into five parts. In experiment 1, 14 Sprague Dawley (SD) rats were randomly divided into control and inflammatory pain group (7 rats each group) to observe the pain behavior and the protein expression of different ErbB receptor subtypes in the spinal dorsal horn. In experiment 2, 30 rats were randomly divided into control group 1, inflammatory pain group 1, and low-, medium-, and high-concentration TX1-85-1 groups, with 6 rats in each group, to observe the effect of inhibiting spinal ErbB3 on inflammatory pain. In experiment 3, 12 rats were randomly divided into control virus group and ErbB3 knockdown virus group, with 6 rats in each group, to observe the effect of knocking down ErbB3 in the spinal dorsal horn on inflammatory pain. In experiment 4, 44 rats were randomly divided into control group 2, inflammatory pain group 2, electroacupuncture group, and sham electroacupuncture group, with 11 rats in each group, to observe the effect of electroacupuncture. In experiment 5, 40 rats were randomly divided into control group 3, inflammatory pain group 3, electroacupuncture group 1, and electroacupuncture + NRG1 group, with 10 rats in each group, to observe the effect of activating ErbB3 on electroacupuncture. A rat model of inflammatory pain was established by subcutaneous injection of 100 μl of complete Freund's adjuvant into the sole of the unilateral hind foot of SD rats. Rats in the low-, medium-, and high-concentration TX1-85-1 groups were intrathecally injected with ErbB3 inhibitor TX1-85-1 on day 5 to day 7 after modeling. Rats in the ErbB3 knockdown virus group were injected with ErbB3 knockdown virus packaged with adenovirus vector-based short hairpin RNA (shRNA) into the spinal dorsal horn in situ 3 weeks before modeling. Rats in each electroacupuncture group received electroacupuncture at bilateral "Zusanli (ST 36)" and "Kunlun (BL 60)" from day 1 to day 7 after modeling, with dense-sparse waves at a frequency of 2 Hz/100 Hz and a current of 0.5-1.5 mA for 30 minutes once a day. Rats in the electroacupuncture + NRG1 group were intrathecally injected with ErbB3 ligand recombinant human neuregulin-1 (NRG1) after electroacupuncture intervention from day 5 to day 7 after modeling. The mechanical withdrawal threshold and thermal withdrawal latency of rats were measured on day 1, 3, 5, and 7 after modeling to evaluate behavior, and Western Blot was used to detect the protein and phosphorylation levels of each ErbB subtype in the spinal dorsal horn. ResultsCompared with the control group, rats in the inflammatory pain group showed decreased mechanical withdrawal threshold and thermal withdrawal latency of rats, and increased expression of phosphorylated ErbB3 (p-ErbB3) protein in the spinal dorsal horn on days 1, 3, 5, and 7 after modeling (P<0.01). On day 5 and day 7 after modeling, compared with the inflammatory pain group 1, the mecha-nical withdrawal threshold and thermal withdrawal latency of rats in the medium- and high-concentration TX1-85-1 groups increased, and the expression of p-ErbB3 protein decreased (P<0.05). On day 1, 3, 5, and 7 after modeling, compared with the control virus group, the mechanical withdrawal threshold and thermal withdrawal latency of rats in the ErbB3 knockdown virus group increased (P<0.05). On day 5 and day 7 after modeling, compared with the inflammatory pain group 2 and the sham electroacupuncture group, the mechanical withdrawal threshold and thermal withdrawal latency of rats in the electroacupuncture group increased, and the expression of p-ErbB3 protein decreased (P<0.05). On day 5 and day 7 after modeling, compared with the electroacupuncture + NRG1 group, the mechanical withdrawal threshold and thermal withdrawal latency of rats in the electroacupuncture group 1 increased (P<0.05). ConclusionThe p-ErbB3 in the spinal dorsal horn involved in hyperalgesia in rats with inflammatory pain, and electroacupuncture at "Zusanli (ST 36)" and "Kunlun (BL 60)" can alleviate inflammatory pain by inhibiting the expression of p-ErbB3 protein in the spinal dorsal horn of rats.
2.Evaluation of the performance of the artificial intelligence - enabled snail identification system for recognition of Oncomelania hupensis robertsoni and Tricula
Jihua ZHOU ; Shaowen BAI ; Liang SHI ; Jianfeng ZHANG ; Chunhong DU ; Jing SONG ; Zongya ZHANG ; Jiaqi YAN ; Andong WU ; Yi DONG ; Kun YANG
Chinese Journal of Schistosomiasis Control 2025;37(1):55-60
Objective To evaluate the performance of the artificial intelligence (AI)-enabled snail identification system for recognition of Oncomelania hupensis robertsoni and Tricula in schistosomiasis-endemic areas of Yunnan Province. Methods Fifty O. hupensis robertsoni and 50 Tricula samples were collected from Yongbei Township, Yongsheng County, Lijiang City, a schistosomiasis-endemic area in Yunnan Province in May 2024. A total of 100 snail sample images were captured with smartphones, including front-view images of 25 O. hupensis robertsoni and 25 Tricula samples (upward shell opening) and back-view images of 25 O. hupensis robertsoni and 25 Tricula samples (downward shell opening). Snail samples were identified as O. hupensis robertsoni or Tricula by schistosomiasis control experts with a deputy senior professional title and above according to image quality and morphological characteristics. A standard dataset for snail image classification was created, and served as a gold standard for recognition of snail samples. A total of 100 snail sample images were recognized with the AI-enabled intelligent snail identification system based on a WeChat mini program in smartphones. Schistosomiasis control professionals were randomly sampled from stations of schistosomisis prevention and control and centers for disease control and prevention in 18 schistosomiasis-endemic counties (districts, cities) of Yunnan Province, for artificial identification of 100 snail sample images. All professionals are assigned to two groups according the median years of snail survey experiences, and the effect of years of snail survey experiences on O. hupensis robertsoni sample image recognition was evaluated. A receiver operating characteristic (ROC) curve was plotted, and the sensitivity, specificity, accuracy, Youden’s index and the area under the curve (AUC) of the AI-enabled intelligent snail identification system and artificial identification were calculated for recognition of snail sample images. The snail sample image recognition results of AI-enabled intelligent snail identification system and artificial identification were compared with the gold standard, and the internal consistency of artificial identification results was evaluated with the Cronbach’s coefficient alpha. Results A total of 54 schistosomiasis control professionals were sampled for artificial identification of snail sample image recognition, with a response rate of 100% (54/54), and the accuracy, sensitivity, specificity, Youden’s index, and AUC of artificial identification were 90%, 86%, 94%, 0.80 and 0.90 for recognition of snail sample images, respectively. The overall Cronbach’s coefficient alpha of artificial identification was 0.768 for recognition of snail sample images, and the Cronbach’s coefficient alpha was 0.916 for recognition of O. hupensis robertsoni snail sample images and 0.925 for recognition of Tricula snail sample images. The overall accuracy of artificial identification was 90% for recognition of snail sample images, and there was no significant difference in the accuracy of artificial identification for recognition of O. hupensis robertsoni (86%) and Tricula snail sample images (94%) (χ2 = 1.778, P > 0.05). There was no significant difference in the accuracy of artificial identification for recognition of snail sample images with upward (88%) and downward shell openings (92%) (χ2 = 0.444, P > 0.05), and there was a significant difference in the accuracy of artificial identification for recognition of snail sample images between schistosomiasis control professionals with snail survey experiences of 6 years and less (75%) and more than 6 years (90%) (χ2 = 7.792, P < 0.05). The accuracy, sensitivity, specificity and AUC of the AI-enabled intelligent snail identification system were 88%, 100%, 76% and 0.88 for recognition of O. hupensis robertsoni snail sample images, and there was no significant difference in the accuracy of recognition of O. hupensis robertsoni snail sample images between the AI-enabled intelligent snail identification system and artificial identification (χ2 = 0.204, P > 0.05). In addition, there was no significant difference in the accuracy of artificial identification for recognition of snail sample images with upward (90%) and downward shell openings (86%) (χ2 = 0.379, P > 0.05), and there was a significant difference in the accuracy of artificial identification for recognition of snail sample images between schistosomiasis control professionals with snail survey experiences of 6 years and less and more than 6 years (χ2 = 5.604, Padjusted < 0.025). Conclusions The accuracy of recognition of snail sample images is comparable between the AI-enabled intelligent snail identification system and artificial identification by schistosomiasis control professionals, and the AI-enabled intelligent snail identification system is feasible for recognition of O. hupensis robertsoni and Tricula in Yunnan Province.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
8.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
9.Eye Movement and Gait Variability Analysis in Chinese Patients With Huntington’s Disease
Shu-Xia QIAN ; Yu-Feng BAO ; Xiao-Yan LI ; Yi DONG ; Zhi-Ying WU
Journal of Movement Disorders 2025;18(1):65-76
Objective:
Huntington’s disease (HD) is characterized by motor, cognitive, and neuropsychiatric symptoms. Oculomotor impairments and gait variability have been independently considered as potential markers in HD. However, an integrated analysis of eye movement and gait is lacking. We performed multiple examinations of eye movement and gait variability in HTT mutation carriers, analyzed the consistency between these parameters and clinical severity, and then examined the associations between oculomotor impairments and gait deficits.
Methods:
We included 7 patients with pre-HD, 30 patients with HD and 30 age-matched controls. We collected demographic data and assessed the Unified Huntington’s Disease Rating Scale (UHDRS) score. Examinations, including saccades, smooth pursuit tests, and optokinetic (OPK) tests, were performed to evaluate eye movement function. The parameters of gait include stride length, walking velocity, step deviation, step length, and gait phase.
Results:
HD patients have significant impairments in the latency and velocity of saccades, the gain of smooth pursuit, and the gain and slow phase velocities of OPK tests. Only the speed of saccades significantly differed between pre-HD patients and controls. There are significant impairments in stride length, walking velocity, step length, and gait phase in HD patients. The parameters of eye movement and gait variability in HD patients were consistent with the UHDRS scores. There were significant correlations between eye movement and gait parameters.
Conclusion
Our results show that eye movement and gait are impaired in HD patients and that the speed of saccades is impaired early in pre-HD. Eye movement and gait abnormalities in HD patients are significantly correlated with clinical disease severity.
10.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.

Result Analysis
Print
Save
E-mail