1.Clinical efficacy of endocrinotherapy combined with Shenqi Pills on patients with hormone-sensitive prostate cancer.
Yu-Hong XIE ; Gang YI ; Xiao-Wen YI ; Tong-Lin SUN ; Qun-Fang LIN ; Jun ZHOU ; Xin-Jun LUO ; Fang-Zhi FU ; Biao WANG ; Qin-Zheng WANG ; Lie ZHANG ; Yang YANG ; Rui-Song GAO ; Qing ZHOU
National Journal of Andrology 2025;31(4):341-348
OBJECTIVE:
The aim of this study is to explore the clinical efficacy and safety of endocrinotherapy combined with Shenqi Pills on hormone-sensitive prostate cancer (HSPC).
METHODS:
Eighty patients who were diagnosed with HSPC and renal-yang deficiency at the First Affiliated Hospital of Hunan University of Traditional Chinese Medicine and the Hospital of Traditional Chinese Medicine of Mayang Miao Autonomous County from 1st April 2021 to 30th April 2024 were randomly divided into 2 groups. The patients in the control group were treated with androgen deprivation therapy (ADT). And the patients in treatment group were treated with Shenqi Pills orally on the basis of the control group. The baseline data of the two groups were analyzed. After 36 months of treatment, the differences between the two groups were compared in terms of overall survival (OS), prostate-specific antigen (PSA) level, PSA response rate, Functional Assessment Scale for Prostate Cancer Therapy (FACT-P), Chinese medicine evidence scores, testosterone level and safety.
RESULTS:
A total of 80 study subjects were included in this study, including 42 cases in the treatment group and 38 cases in the control group. There was no statistical difference in the baseline data between the two groups before treatment (P>0.05). At the end of the observation period, a statistically significant difference in OS was found in the treatment group compared to the control group in the subgroup of patients with a disease duration ranged of 0-6 months (P<0.05). There was no statistically significant difference in PSA levels in the treatment group at 3 months (P>0.05). And the differences in the proportion of PSA50 (98.1% vs 91.4%), PSA90 (92.9% vs 84.6%) and the proportion of decrease in PSA (56.7% vs 33.8%) in the treatment group were found compared to those in the control group after 6 months of tre atment. After 12 months of treatment, the scores of FACT-4 and renal-yang deficiency in the treatment group were (95.28±7.93) and (15.73±5.70) respectively, compared to the scores in the control group ([85.46±10.12] and [18.20±4.27] (P<0.05). However, there was no significant difference in serum testosterone ([0.60±0.24] nmol/L vs [1.09±2.10] nmol/L) between the two groups (P>0.05). After 24 months of treatment, there were significant differences in in the FACT-4 total score ([97.95±7.54] vs [80.33±8.58]), renal-yang deficiency syndrome score ([14.64±5.15] vs [24.94±8.75]) between the treatment group and the control group (P<0.05). However, there was no significant difference in serum testosterone ( [0.73±1.01] nmol/L vs [0.59±0.25] nmol/L) between the two groups (P> 0.05). Better therapeutic results were showed in the treatment group in terms of total FACT-P score, physical situation score, social and family situation score, emotional state score, functional state score, additional score and renal-yang deficiency symptom score (P<0.05). After treatment, there was no serious adverse reaction in the course of treatment, and no obvious abnormality was found in the liver and kidney function of the patients from two groups.
CONCLUSION
Endocrinotherapy combined with Shenqi Pills is safe and effective in HSPC and can reduce the risk of death in HSPC patients, and the earlier the intervention, the longer the overall survival of the patients. In addition, this treatment regimen can increase the PSA response rate, improve patients' quality of life, and reduce the renal-yang deficiency syndrome score without the risk of elevating serum testosterone levels.
Humans
;
Male
;
Drugs, Chinese Herbal/therapeutic use*
;
Prostatic Neoplasms/drug therapy*
;
Androgen Antagonists/therapeutic use*
;
Prostate-Specific Antigen/blood*
;
Aged
;
Middle Aged
;
Treatment Outcome
;
Testosterone
2.Robot-assisted percutaneous coronary intervention: a prospective, multicenter, randomized controlled, non-inferiority clinical trial.
Yi YU ; Zheng CHEN ; Zhi-Jian WANG ; Yue-Ping LI ; Li-Xia YANG ; Jing QI ; Jing XIE ; Tao HUANG ; Dong-Mei SHI ; Yu-Jie ZHOU
Journal of Geriatric Cardiology 2025;22(8):725-735
OBJECTIVE:
To evaluate the safety and effectiveness of robot-assisted percutaneous coronary intervention (R-PCI) compared to traditional manual percutaneous coronary intervention (M-PCI).
METHODS:
This prospective, multicenter, randomized controlled, non-inferior clinical trial enrolled patients with coronary heart disease who met the inclusion criteria and had indications for elective percutaneous coronary intervention. Participants were randomly assigned to either the R-PCI group or the M-PCI group. Primary endpoints were clinical and technical success rates. Clinical success was defined as visually estimated residual post-percutaneous coronary intervention stenosis < 30% with no 30-day major adverse cardiac events. Technical success in the R-PCI group was defined as successful completion of percutaneous coronary intervention using the ETcath200 robot-assisted system, without conversion to M-PCI in the event of a guidewire or balloon/stent catheter that was unable to cross the vessel or was poorly supported by the catheter. Secondary endpoints included total procedure time, percutaneous coronary intervention procedure time, fluoroscopy time, contrast volume, operator radiation exposure, air kerma, and dose-area product.
RESULTS:
The trial enrolled 152 patients (R-PCI: 73 patients, M-PCI: 79 patients). Lesions were predominantly B2/C type (73.6%). Both groups achieved 100% clinical success rate. No major adverse cardiac events occurred during the 30-day follow-up. The R-PCI group had a technical success rate of 100%. The R-PCI group had longer total procedure and fluoroscopy times, but lower operator radiation exposure. The percutaneous coronary intervention procedure time, contrast volume, air kerma, and dose-area product were similar between the two groups.
CONCLUSIONS
For certain complex lesions, performing percutaneous coronary intervention using the ETcath200 robot-assisted system is safe and effective and does not result in conversion to M-PCI.
3.Qingda Granule Attenuates Hypertension-Induced Cardiac Damage via Regulating Renin-Angiotensin System Pathway.
Lin-Zi LONG ; Ling TAN ; Feng-Qin XU ; Wen-Wen YANG ; Hong-Zheng LI ; Jian-Gang LIU ; Ke WANG ; Zhi-Ru ZHAO ; Yue-Qi WANG ; Chao-Ju WANG ; Yi-Chao WEN ; Ming-Yan HUANG ; Hua QU ; Chang-Geng FU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(5):402-411
OBJECTIVE:
To assess the efficacy of Qingda Granule (QDG) in ameliorating hypertension-induced cardiac damage and investigate the underlying mechanisms involved.
METHODS:
Twenty spontaneously hypertensive rats (SHRs) were used to develope a hypertension-induced cardiac damage model. Another 10 Wistar Kyoto (WKY) rats were used as normotension group. Rats were administrated intragastrically QDG [0.9 g/(kg•d)] or an equivalent volume of pure water for 8 weeks. Blood pressure, histopathological changes, cardiac function, levels of oxidative stress and inflammatory response markers were measured. Furthermore, to gain insights into the potential mechanisms underlying the protective effects of QDG against hypertension-induced cardiac injury, a network pharmacology study was conducted. Predicted results were validated by Western blot, radioimmunoassay immunohistochemistry and quantitative polymerase chain reaction, respectively.
RESULTS:
The administration of QDG resulted in a significant decrease in blood pressure levels in SHRs (P<0.01). Histological examinations, including hematoxylin-eosin staining and Masson trichrome staining revealed that QDG effectively attenuated hypertension-induced cardiac damage. Furthermore, echocardiography demonstrated that QDG improved hypertension-associated cardiac dysfunction. Enzyme-linked immunosorbent assay and colorimetric method indicated that QDG significantly reduced oxidative stress and inflammatory response levels in both myocardial tissue and serum (P<0.01).
CONCLUSIONS
Both network pharmacology and experimental investigations confirmed that QDG exerted its beneficial effects in decreasing hypertension-induced cardiac damage by regulating the angiotensin converting enzyme (ACE)/angiotensin II (Ang II)/Ang II receptor type 1 axis and ACE/Ang II/Ang II receptor type 2 axis.
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypertension/pathology*
;
Renin-Angiotensin System/drug effects*
;
Rats, Inbred SHR
;
Oxidative Stress/drug effects*
;
Male
;
Rats, Inbred WKY
;
Blood Pressure/drug effects*
;
Myocardium/pathology*
;
Rats
;
Inflammation/pathology*
4.Association of short-term exposure to polycyclic aromatic hydrocarbons in ambient fine particulate matter with resident mortality: a case-crossover study
Sirong WANG ; Zhi LI ; Yanmei CAI ; Chunming HE ; Huijing LI ; Yi ZHENG ; Lu LUO ; Ruijun XU ; Yuewei LIU ; Huoqiang XIE ; Qinqin JIANG
Journal of Public Health and Preventive Medicine 2025;36(6):6-11
Objective To quantitatively assess the association of short-term exposure to polycyclic aromatic hydrocarbons (PAHs) in ambient fine particulate matter (PM2.5) with residents mortality. Methods A time-stratified case-crossover study was conducted from 2020 to 2022 among 10606 non-accidental residents by using the Guangzhou Cause of Death Surveillance System in Conghua District, Guangzhou. Exposure levels of PAHs in PM2.5 and meteorological data during the study period were obtained from the Center for Disease Control and Prevention in Conghua District and the China Meteorological Administration Land Data Assimilation System (CLDAS-V2.0), respectively. Conditional Poisson regression model was used to estimate the exposure-response association between PAHs and the mortality risk. Results Fluoranthene, chrysene, benzo[k]fluoranthene, benzo[a]pyrene, and indeno[1,2,3-cd]pyrene were significantly associated with an increased risk of mortality. For every one interquartile range increase in exposure levels, the non-accidental mortality risks increased by 8.33% (95% CI: 1.80%, 15.27%), 4.67% (95% CI: 1.86%, 7.57%), 6.07% (95% CI: 2.08%, 10.21%), 4.62% (95% CI: 1.85%, 7.47%), and 4.70% (95% CI: 0.53%, 9.03%), respectively. The estimated non accidental deaths attributable to exposure to fluoranthene, chrysene, benzo[k]fluorine, benzo[a]pyrene and indine[1,2,3-cd]pyrene were 5.91%, 6.08%, 6.51%, 6.46%, and 4.21%, respectively. Conclusions Short-term exposure to PAHs in PM2.5, including fluoranthene, chrysene, benzo[k]fluoranthene, benzo[a]pyrene and indine[1,2,3-cd]pyrene, was significantly associated with an increased risk of mortality among residents.
5.Research progress in the role of HCN channels in Alzheimer's disease.
Xiao-Juan LI ; Bo ZHENG ; Ping LAN ; Wen-Xin ZHANG ; Yi-Peng LI ; Zhi HE
Acta Physiologica Sinica 2025;77(5):867-875
Alzheimer's disease (AD) is the commonest neurodegenerative disease that causes memory decline, cognitive dysfunction and behavior disorders in the aged people. Primary pathological hallmarks of AD include amyloid-β (Aβ), neurofibrillary tangles (NFTs), gliosis, and neuronal loss. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have important physiological functions, especially in aspects of controlling the resting membrane potential, pacemaker activity, memory formation, sleep and arousal. This article reviews the structure, distribution, regulation of HCN channels and the role of HCN channels in the pathological mechanisms of AD, aiming to provide drug therapeutic targets for the prevention and treatment of AD.
Humans
;
Alzheimer Disease/physiopathology*
;
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology*
;
Animals
;
Amyloid beta-Peptides/metabolism*
6.Glutamine signaling specifically activates c-Myc and Mcl-1 to facilitate cancer cell proliferation and survival.
Meng WANG ; Fu-Shen GUO ; Dai-Sen HOU ; Hui-Lu ZHANG ; Xiang-Tian CHEN ; Yan-Xin SHEN ; Zi-Fan GUO ; Zhi-Fang ZHENG ; Yu-Peng HU ; Pei-Zhun DU ; Chen-Ji WANG ; Yan LIN ; Yi-Yuan YUAN ; Shi-Min ZHAO ; Wei XU
Protein & Cell 2025;16(11):968-984
Glutamine provides carbon and nitrogen to support the proliferation of cancer cells. However, the precise reason why cancer cells are particularly dependent on glutamine remains unclear. In this study, we report that glutamine modulates the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) to promote cancer cell proliferation and survival. Specifically, lysine 604 (K604) in the sixth of the 7 substrate-recruiting WD repeats of FBW7 undergoes glutaminylation (Gln-K604) by glutaminyl tRNA synthetase. Gln-K604 inhibits SCFFBW7-mediated degradation of c-Myc and Mcl-1, enhances glutamine utilization, and stimulates nucleotide and DNA biosynthesis through the activation of c-Myc. Additionally, Gln-K604 promotes resistance to apoptosis by activating Mcl-1. In contrast, SIRT1 deglutaminylates Gln-K604, thereby reversing its effects. Cancer cells lacking Gln-K604 exhibit overexpression of c-Myc and Mcl-1 and display resistance to chemotherapy-induced apoptosis. Silencing both c-MYC and MCL-1 in these cells sensitizes them to chemotherapy. These findings indicate that the glutamine-mediated signal via Gln-K604 is a key driver of cancer progression and suggest potential strategies for targeted cancer therapies based on varying Gln-K604 status.
Glutamine/metabolism*
;
Myeloid Cell Leukemia Sequence 1 Protein/genetics*
;
Humans
;
Proto-Oncogene Proteins c-myc/genetics*
;
Cell Proliferation
;
Signal Transduction
;
Neoplasms/pathology*
;
F-Box-WD Repeat-Containing Protein 7/genetics*
;
Cell Survival
;
Cell Line, Tumor
;
Apoptosis
7.Acupuncture at Weizhong (BL40) attenuates acetic acid-induced overactive bladder in rats by regulating brain neural activity through the modulation of mast cells and tibial nerves.
Xin LIU ; Chao-Yue ZHANG ; Xiu-Yu DU ; Shan-Shan LI ; Yu-Qing WANG ; Yi ZHENG ; Han-Zhi DENG ; Xiao-Qin FANG ; Jia-Ying LI ; Zu-Qing WANG ; Shi-Fen XU ; Yi-Qun MI
Journal of Integrative Medicine 2025;23(1):46-55
OBJECTIVE:
The present study evaluated the effects of deep acupuncture at Weizhong acupoint (BL40) on bladder function and brain activity in a rat model of overactive bladder (OAB), and investigated the possible mechanisms around the acupuncture area that initiate the effects of acupuncture.
METHODS:
Adult female Sprague-Dawley rats were randomly divided into six groups, comprising a control group, model group, group treated with deep acupuncture at BL40, group treated with shallow acupuncture at BL40, group treated with acupuncture at non-acupoint next to BL40, and group treated with acupuncture at Xuanzhong (GB39). Urodynamic evaluation was used to observe the urination, and functional magnetic resonance imaging was used to observe the brain activation. The mechanism of acupuncture at BL40 in regulating bladder function was explored by toluidine blue staining and enzyme-linked immunosorbent assay, and the mechanism was verified by stabilizing mast cells (MCs) or blocking tibial nerve.
RESULTS:
Deep acupuncture at BL40 significantly increased the intercontraction interval in OAB rats and enhanced the mean amplitude of low frequency fluctuation of primary motor cortex (M1), periaquaductal gray matter (PAG), and pontine micturition center (PMC). It also increased the zero-lag functional connectivity between M1 and PAG and between PAG and PMC. Shallow acupuncture at BL40 and acupuncture at non-acupoint or GB39 had no effect on these indexes. Further studies suggested that deep acupuncture at BL40 increased the number and degranulation rate of MCs as well as the contents of 5-hydroxytryptamine, substance P, and histamine in the tissues around BL40. Blocking the tibial nerve by lidocaine injection or inhibiting MC degranulation by sodium cromoglycate injection obstructed the effects of acupuncture on restoring urinary function and modulating brain activation in OAB rats.
CONCLUSION
Deep acupuncture at BL40 may be more effective for inhibiting OAB by promoting degranulation of MCs around the acupoint and stimulating tibial nerve, thereby regulating the activation of the brain area that controls the lower urinary tract. Please cite this article as: Liu X, Zhang CY, Du XY, Li SS, Wang YQ, Zheng Y, Deng HZ, Fang XQ, Li JY, Wang ZQ, Xu SF, Mi YQ. Acupuncture at Weizhong (BL40) attenuates acetic acid-induced overactive bladder in rats by regulating brain neural activity through the modulation of mast cells and tibial nerves. J Integr Med. 2025; 23(1): 46-55.
Animals
;
Urinary Bladder, Overactive/physiopathology*
;
Mast Cells/physiology*
;
Rats, Sprague-Dawley
;
Female
;
Acupuncture Therapy
;
Acupuncture Points
;
Rats
;
Brain/physiopathology*
;
Tibial Nerve/physiopathology*
;
Acetic Acid
;
Urinary Bladder/physiopathology*
8.Association between short-term exposure to air pollution and outpatient and emergency visits for neurological diseases in Conghua District, Guangzhou from 2015 to 2022
Lu LUO ; Zhi LI ; Yanmei CAI ; Chunming HE ; Yi ZHENG ; Sirong WANG ; Ruijun XU ; Yuewei LIU ; Qinqin JIANG
Journal of Environmental and Occupational Medicine 2025;42(11):1307-1314
Background Exposure to air pollutants increases the risk of diseases in multiple systems, including respiratory and cardiovascular systems, yet its association with neurological diseases remains unclear. Objective To quantitatively evaluate the association between short-term exposure to air pollutants and outpatient and emergency visits for neurological diseases, identify potential susceptible populations, and quantify associated disease burden. Methods Daily 24-hour average concentrations of fine particulate matter (PM2.5), inhalable particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO), daily maximum 8-hour average concentration of ozone (O3), daily meteorological data (24-hour average temperature, 24-hour average relative humidity), and data on daily outpatient and emergency department visits for neurological diseases from two hospitals in Conghua District, Guangzhou, China, were collected from 2015 to 2022. A time-stratified case-crossover design was adopted, and a conditional Poisson regression model was constructed to analyze the association between air pollution exposure and neurological disease visits. Two-pollutant models and sensitivity analysis were used to validate model stability. Stratified analyses by season (cold season: from November to March; warm season: from April to October), sex (male, female), and age (≤45 years, 46–60 years, ≥61 years) were performed to identify vulnerable group. Additionally, the number and proportion of neurological disease visits attributable to short-term air pollutant exposure were calculated. Results A total of 72 673 outpatient and emergency department visits for neurological diseases were included during the study period. Most of the patients were middle-aged and elderly individuals (69.89% were over 45 years old) and females (60.25%). The results of single-pollutant models showed that for each interquartile range (IQR) increase in exposure to PM2.5, PM10, SO2, NO2, CO, and O3, the risk of outpatient and emergency department visits for neurological diseases increased by 7.54% (95%CI: 4.69%, 10.46%), 6.66% (95%CI: 3.92%, 9.46%), 16.72% (95%CI: 10.58%, 23.19%), 8.12% (95%CI: 4.82%, 11.53%), 5.60% (95%CI: 2.34%, 8.97%), and 6.11% (95%CI: 2.91%, 9.40%), respectively. The results of the two-pollutant model showed that the association between PM2.5 and SO2 exposure and outpatient and emergency department visits for neurological diseases were relatively stable. The stratified analyses showed that the effect of SO2 was stronger in the cold season. It was estimated that 8.32% (95%CI: 5.55%, 10.96%) and 6.65% (95%CI: 4.27%, 8.96%) of the outpatient and emergency department visits were attributable to short-term exposure to SO2 and PM2.5, respectively. Conclusion Exposure to PM2.5 and SO2 is associated with increased risks of outpatient and emergency visits for neurological diseases. SO2 shows stronger effects during the cold season, and exposure to air pollution contributes to up to 8.32% of neurological disease visits.
9.Human Cytomegalovirus Infection and Embryonic Malformations: The Role of the Wnt Signaling Pathway and Management Strategies.
Xiao Mei HAN ; Bao Yi ZHENG ; Zhi Cui LIU ; Jun Bing CHEN ; Shu Ting HUANG ; Lin XIAO ; Dong Feng WANG ; Zhi Jun LIU
Biomedical and Environmental Sciences 2025;38(9):1142-1149
Human cytomegalovirus (HCMV) poses a significant risk of neural damage during pregnancy. As the most prevalent intrauterine infectious agent in low- and middle-income countries, HCMV disrupts the development of neural stem cells, leading to fetal malformations and abnormal structural and physiological functions in the fetal brain. This review summarizes the current understanding of how HCMV infection dysregulates the Wnt signaling pathway to induce fetal malformations and discusses current management strategies.
Humans
;
Cytomegalovirus Infections/virology*
;
Wnt Signaling Pathway
;
Pregnancy
;
Female
;
Cytomegalovirus/physiology*
;
Pregnancy Complications, Infectious/virology*
;
Congenital Abnormalities/virology*
;
Animals
10.Ionizing Radiation Alters Circadian Gene Per1 Expression Profiles and Intracellular Distribution in HT22 and BV2 Cells.
Zhi Ang SHAO ; Yuan WANG ; Pei QU ; Zhou Hang ZHENG ; Yi Xuan LI ; Wei WANG ; Qing Feng WU ; Dan XU ; Ju Fang WANG ; Nan DING
Biomedical and Environmental Sciences 2025;38(11):1451-1457


Result Analysis
Print
Save
E-mail