1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Exploration of Party-building leadership in promoting hospital culture construction in the new era: taking Xi’an No. 9 Hospital as an example
Louyan MA ; Yi WANG ; Zhen ZHEN ; Mi PANG ; Ting HE ; Puyan WEN ; Juxian ZHENG
Chinese Medical Ethics 2025;38(3):398-402
Hospital culture is the sum of common values, codes of conduct, and working methods formed by internal employees within the hospital, and it is the spiritual pillar and core of cohesion of the hospital. Party-building leadership plays an important role in promoting hospital culture construction, including strengthening values guidance, enhancing team cohesion, facilitating management system innovation, and shaping social image and brand value. By analyzing the effectiveness of a series of Party-building activities carried out by Xi’an No. 9 Hospital in recent years, this paper explored the effect and significance of Party-building leadership in promoting hospital culture construction in the new era, as well as proposed guiding strategies for strengthening Party-building work in promoting hospital culture construction in the new era, so as to promote high-quality development of the hospital.
3.Subchronic exposure to benzoapyrene results in lung tissue cell damage caused by ferroptosis in mice
Chaoli ZHOU ; Shihan DING ; Hui HE ; Zhirui MA ; Jie CHEN ; Xingdi GUO ; Yi LYU ; Jinping ZHENG
Journal of Environmental and Occupational Medicine 2025;42(8):971-977
Background Exposure to benzo[a]pyrene (BaP) may impair lung function through various mechanisms; however, it remains uncertain whether BaP induces ferroptosis in lung tissue cells, resulting in lung function impairment. Objective To investigate the ferroptosis of lung tissue cells triggered by subchronic BaP exposure in mice and its correlation with lung injury, and to explore the function of ferroptosis in BaP-induced lung tissue damage. Method Seventy-two healthy 3-weeks-old male C57BL/6J mice were acclimatized for 1 week and then randomly divided into six groups: control group (corn oil 10 mL·kg−1), low-dose BaP group (2.5 mg·kg−1), medium-dose BaP group (5 mg·kg−1), high-dose BaP group (10 mg·kg−1), BaP+ferrostatin-1 (Fer-1) group (10 mg·kg−1+1 mg·kg−1), and Fer-1 group (1 mg·kg−1), with 12 mice each group. Corn oil and BaP were administered via gavage every other day, followed by an intraperitoneal injection of Fer-1 the subsequent day, throughout a period of 90 d. Whole-body plethysmography was applied to detect lung function; hematoxylin-eosin staining (HE) and Masson staining were used to observe lung tissue injury and fibrosis; microscopy of alveolar epithelial cells was conducted to reveal mitochondrial morphology; biochemical assays were used to measure the content of tissue iron, malondialdehyde (MDA), and glutathione (GSH), as well as the activity of glutathione peroxidase (GSH-Px); Western blotting and real-time quantitative PCR (RT-qPCR) analyses were performed to reveal the protein and mRNA expression of ferroptosis markers. Results Compared to the control group, the high-dose BaP group showed a significant increase in expiration time (Te) (P<0.01), and a significant decrease in ratio rate of achieving peak expiratory flow (Rpef), tidal volume (TVb), peak inspiratory flow (PIF), minute volume (MVb), and peak expiratory flow (PEF) (P<0.05 or 0.01). Based on the results of HE and Masson staining, partial destruction of alveolar structures, thickening of alveolar walls, infiltration of inflammatory cells, significant thickening of tracheal walls and a large deposition of collagen fibers in lung tissue were observed in the medium- and high-dose BaP groups. By microscopy, the alveolar epithelial cells exposed to low-dose BaP showed condensed chromatin, and the mitochondria exposed to medium and high-dose BaP showed wrinkles, increased mitochondrial membrane density, and diminished mitochondrial cristae. Compared to the control group, in the medium- and high-dose BaP groups, the lung tissue iron content and the expression levels of ACSL4 protein and mRNA significantly elevated (P<0.01 or 0.05), while the mRNA expression level of SLC7A11 significantly decreased (P<0.05); in the high-dose BaP group, the MDA content, COX2 protein, and PTGS2 mRNA expression levels significantly increased (P<0.05 or 0.01), GSH content and GSH-Px activity, GPX4 protein and mRNA expression levels, and the expression level of SLC7A11 protein significantly decreased (P<0.01 or 0.05). The ferroptosis inhibitor Fer-1 markedly reversed respiratory function, morphology, mitochondrial alterations, and the aforementioned ferroptosis-related biochemical indicators. Conclusion Subchronic exposure to BaP can induce ferroptosis in mice lung tissue cells, resulting in compromised lung function.
4.Association of short-term exposure to polycyclic aromatic hydrocarbons in ambient fine particulate matter with resident mortality: a case-crossover study
Sirong WANG ; Zhi LI ; Yanmei CAI ; Chunming HE ; Huijing LI ; Yi ZHENG ; Lu LUO ; Ruijun XU ; Yuewei LIU ; Huoqiang XIE ; Qinqin JIANG
Journal of Public Health and Preventive Medicine 2025;36(6):6-11
Objective To quantitatively assess the association of short-term exposure to polycyclic aromatic hydrocarbons (PAHs) in ambient fine particulate matter (PM2.5) with residents mortality. Methods A time-stratified case-crossover study was conducted from 2020 to 2022 among 10606 non-accidental residents by using the Guangzhou Cause of Death Surveillance System in Conghua District, Guangzhou. Exposure levels of PAHs in PM2.5 and meteorological data during the study period were obtained from the Center for Disease Control and Prevention in Conghua District and the China Meteorological Administration Land Data Assimilation System (CLDAS-V2.0), respectively. Conditional Poisson regression model was used to estimate the exposure-response association between PAHs and the mortality risk. Results Fluoranthene, chrysene, benzo[k]fluoranthene, benzo[a]pyrene, and indeno[1,2,3-cd]pyrene were significantly associated with an increased risk of mortality. For every one interquartile range increase in exposure levels, the non-accidental mortality risks increased by 8.33% (95% CI: 1.80%, 15.27%), 4.67% (95% CI: 1.86%, 7.57%), 6.07% (95% CI: 2.08%, 10.21%), 4.62% (95% CI: 1.85%, 7.47%), and 4.70% (95% CI: 0.53%, 9.03%), respectively. The estimated non accidental deaths attributable to exposure to fluoranthene, chrysene, benzo[k]fluorine, benzo[a]pyrene and indine[1,2,3-cd]pyrene were 5.91%, 6.08%, 6.51%, 6.46%, and 4.21%, respectively. Conclusions Short-term exposure to PAHs in PM2.5, including fluoranthene, chrysene, benzo[k]fluoranthene, benzo[a]pyrene and indine[1,2,3-cd]pyrene, was significantly associated with an increased risk of mortality among residents.
5.Corrigendum: Comparative analysis of cancer statistics in China and the United States in 2024.
Yujie WU ; Siyi HE ; Mengdi CAO ; Yi TENG ; Qianru LI ; Nuopei TAN ; Jiachen WANG ; Tingting ZUO ; Tianyi LI ; Yuanjie ZHENG ; Changfa XIA ; Wanqing CHEN
Chinese Medical Journal 2025;138(10):1260-1260
6.Trends and sex disparities in the burden of urolithiasis in 204 countries and territories, 1990-2021.
Junjiong ZHENG ; Qihang ZHANG ; Jie ZHANG ; Yuhui YAO ; Li CHEN ; Yunfei LIU ; Yi SONG ; Tianxin LIN ; Guohua HE
Chinese Medical Journal 2025;138(16):1973-1983
BACKGROUND:
Urolithiasis is a widespread disease with a high prevalence worldwide. This study aims to evaluate the disease burden of urolithiasis and its trends from 1990 to 2021 globally, based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 database.
METHODS:
The numbers and age-standardized rates (ASRs) of incidence, disability-adjusted life years (DALYs), and mortality of urolithiasis were extracted from GBD 2021 to represent the disease burden. Joinpoint regression analyses were conducted to assess the temporal trends in the burden of urolithiasis. The male-to-female ASR ratio indices were used to evaluate sex disparities. Additionally, we explored the relationship between the ASR ratio and the sociodemographic index (SDI).
RESULTS:
The total numbers of incidence, DALY, and mortality of urolithiasis were 105,983,780 cases (95% uncertainty interval [UI] = 88,349,356-128,645,155 cases), 693,444 cases (95% UI = 567,765-850,490 cases), and 17,672 cases (95% UI = 13,932-21,241 cases), respectively, in 2021. There is an increasing trend in the number of these measures globally, whereas the ASRs have decreased over the past 30 years. The age-standardized incidence rate (ASIR) and age-standardized mortality rate (ASMR) were significantly higher in males than in females in 2021. The sex disparities in the age-standardized DALY rate (ASDR) and ASMR of urolithiasis were negatively correlated with the SDI. In 2021, the ASIR of urolithiasis was 964.70 (95% UI = 801.26-1175.09) per 100,000 people in China, which is much lower than the global average (1242.84 [95% UI = 1034.94-1506.99] per 100,000 people). Compared with the global average, a more pronounced decline in ASIR was observed in China from 1793.16 (1446.0-2235.14) in 1990 to 964.70 (801.26-1175.09) per 100,000 people in 2021.
CONCLUSIONS
Urolithiasis poses a significant healthcare burden worldwide. More robust global and national strategies are warranted to address the prevention and treatment, especially in low SDI countries and regions.
Humans
;
Urolithiasis/mortality*
;
Male
;
Female
;
Incidence
;
Global Burden of Disease
;
Disability-Adjusted Life Years
;
Adult
;
Middle Aged
;
Risk Factors
;
Sex Factors
7.Research progress in the role of HCN channels in Alzheimer's disease.
Xiao-Juan LI ; Bo ZHENG ; Ping LAN ; Wen-Xin ZHANG ; Yi-Peng LI ; Zhi HE
Acta Physiologica Sinica 2025;77(5):867-875
Alzheimer's disease (AD) is the commonest neurodegenerative disease that causes memory decline, cognitive dysfunction and behavior disorders in the aged people. Primary pathological hallmarks of AD include amyloid-β (Aβ), neurofibrillary tangles (NFTs), gliosis, and neuronal loss. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have important physiological functions, especially in aspects of controlling the resting membrane potential, pacemaker activity, memory formation, sleep and arousal. This article reviews the structure, distribution, regulation of HCN channels and the role of HCN channels in the pathological mechanisms of AD, aiming to provide drug therapeutic targets for the prevention and treatment of AD.
Humans
;
Alzheimer Disease/physiopathology*
;
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology*
;
Animals
;
Amyloid beta-Peptides/metabolism*
8.Mechanism of Syngnathus extract in treating knee osteoarthritis of rats via regulating PI3K/Akt/mTOR signaling pathway.
Quan-Wei ZHENG ; Guo-Wei WANG ; Si-Xian WU ; Tao ZHUO ; Yi HE ; Jian-Hang LIU
China Journal of Chinese Materia Medica 2025;50(9):2442-2449
To investigate the mechanism of action of Syngnathus extract in treating knee osteoarthritis of rats, forty-eight male SD rats were randomly divided into the blank group, model group, positive drug group, as well as low-dose, medium-dose, and high-dose groups of Syngnathus extract. The rat model of knee osteoarthritis was constructed by intra-articular injection of sodium iodoacetate. After successful modeling, celecoxib(18 mg·kg~(-1)·d~(-1)) and Syngnathus extract(0.4, 0.8, and 1.6 g·kg~(-1)·d~(-1)) were given in different groups by gavage intervention for two weeks. Hematoxylin-eosin(HE) staining was used to observe the histopathological changes of cartilage in knee joints, and enzyme-linked immunosorbent assay(ELISA) was used to detect the expression level of inflammatory factors in serum. Real-time fluorescence quantitative PCR, Western blot, and immunohistochemistry were used to detect the levels of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/mammalian target protein of rapamycin(mTOR) pathway-related mRNA and protein expression. The results showed that, comparied with the blank group, the cartilage surface of the knee joints of rats in the model group was uneven, with disorganized levels and defective cartilage tissue. The serum levels of interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) and the mRNA levels of PI3K, Akt, and mTOR in cartilage tissue, as well as the protein expression levels of phosphorylated PI3K(p-PI3K)/PI3K, phosphorylated Akt(p-Akt)/Akt, phosphorylated mTOR(p-mTOR)/mTOR, and P62 were significantly increased. Beclin1 protein expression was decreased. Comparied with the model group, the number of chondrocytes in the knee joint of rats in each group of Syngnathus extract increased, and the arrangement of chondrocytes was relatively neat. The cartilage layer was restored, and the serum levels of IL-1β, IL-6, and TNF-α, as well as the mRNA expression levels of PI3K, Akt, and mTOR in cartilage tissue were significantly reduced. The protein expression levels of p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR, and P62 were significantly reduced in the rats in the middle-dose and high-dose groups of Syngnathus extract, and the Beclin1 protein expression was significantly increased. The protein expression levels of p-PI3K/PI3K, p-Akt/Akt, and P62 in rats in the low-dose group of Syngnathus extract were significantly reduced. In summary, Syngnathus extract may be used to treat knee osteoarthritis by inhibiting the expression of PI3K/Akt/mTOR signaling pathway, so as to alleviate the inflammatory response in the organism, enhance the autophagy activity of chondrocytes, and reduce the apoptosis of chondrocytes.
Animals
;
TOR Serine-Threonine Kinases/genetics*
;
Male
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Rats
;
Osteoarthritis, Knee/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Humans
9.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*
10.Mechanism of Hippocampus in treatment of knee osteoarthritis based on network pharmacology, molecular docking, and experimental verification.
Tao ZHUO ; Guo-Wei WANG ; Si-Xian WU ; Quan-Wei ZHENG ; Yi HE ; Jian-Hang LIU
China Journal of Chinese Materia Medica 2025;50(14):4026-4036
This study predicts the potential mechanism of Hippocampus in the treatment of knee osteoarthritis(KOA) through network pharmacology, with preliminary verification using molecular docking and animal experiments. The database was used to screen the active chemical components of Hippocampus and the targets of KOA, and Gene Ontology(GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis, and molecular docking were performed on the relevant core targets to preliminarily explore the potential targets and mechanisms of Hippocampus in the treatment of KOA. A rat KOA model was constructed by intra-articular injection of sodium iodoacetate, and the rats were intervened with different doses of Hippocampus decoction and celecoxib. The expression of relevant targets was detected through hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), RT-qPCR, and Western blot to further validate the network pharmacology results. A total of 23 drug-like components of the Hippocampus were screened, and 128 common targets with KOA were identified, involving interleukin-17(IL-17) signaling pathway, transcription factor(FoxO) signaling pathway, tumor necrosis factor(TNF) signaling pathway. Molecular docking results showed that the screened core chemical components exhibited good affinity with key targets. HE staining demonstrated that Hippocampus improved the morphology of the cartilage layer. ELISA confirmed that Hippocampus significantly reduced the levels of IL-6 and TNF-α in the serum of KOA rats. Western blot and RT-qPCR analysis showed that Hippocampus significantly reduced the expression of IL-6, TNF-α, matrix metalloproteinase(MMP) 13, IL-17A, nuclear factor κB activator 1(ACT1), tumor necrosis factor receptor-associated factor 6(TRAF6) and nuclear factor κB(NF-κB) in cartilage tissue. The results suggest that Hippocampus can alleviate the degree of joint damage in the KOA rat model induced by sodium iodoacetate. The mechanism of action is related to the inhibition of the IL-17 signaling pathway, reduction of inflammation, and inhibition of extracellular matrix(ECM) degradation.
Animals
;
Molecular Docking Simulation
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Network Pharmacology
;
Male
;
Osteoarthritis, Knee/metabolism*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Humans
;
Interleukin-17/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Hippocampus/chemistry*


Result Analysis
Print
Save
E-mail