1.Resveratrol activates extracellular-regulated protein kinase 5 signaling protein to promote proliferation of mouse MC3T3-E1 cells
Yongkang NIU ; Zhiwei FENG ; Yaobin WANG ; Zhongcheng LIU ; Dejian XIANG ; Xiaoyuan LIANG ; Zhi YI ; Hongwei ZHAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(5):908-916
BACKGROUND:The extracellular-regulated protein kinase 5(ERK5)signaling protein is essential for the survival of organisms,and resveratrol can promote osteoblast proliferation through various pathways.However,whether resveratrol can regulate osteoblast function through the ERK5 signaling protein needs further verification. OBJECTIVE:To explore the regulatory effect of ERK5 on the proliferation of MC3T3-E1 cells and related secreted proteins,and to further verify whether resveratrol can complete the above process by activating ERK5. METHODS:Mouse MC3T3-E1 preosteoblasts were treated with complete culture medium,XMD8-92(an ERK5 inhibitor),epidermal growth factor(an ERK5 activator),resveratrol alone,XMD8-92+EGF,and resveratrol+XMD8-92,respectively.Western blot assay was used to detect the expression of ERK5 and p-ERK5 proteins,proliferation-related proteins Cyclin D1,CDK4 and PCNA,and osteoblast-secreted proteins osteoprotegerin and receptor activator of nuclear factor-κB ligand in MC3T3-E1 cells of each group.The fluorescence intensity of ERK5,osteoprotegerin and receptor activator of nuclear factor-κB ligand in each group was detected by cell immunofluorescence staining,and cell proliferation was detected by EdU staining,respectively.The appropriate concentration and time of resveratrol intervention in MC3T3-E1 cells were determined by cell morphology observation and cell counting kit-8 assay. RESULTS AND CONCLUSION:The activation of ERK5 signaling protein could effectively promote the proliferation of MC3T3-E1 cells,up-regulate the osteoprotegerin/receptor activator of nuclear factor-κB ligand ratio.The appropriate concentration and time for resveratrol intervention in MC3T3-E1 cells was 5 μmol/L and 24 hours,respectively.Resveratrol could activate ERK5 signaling protein,thereby promoting osteoblast proliferation and up-regulating the osteoprotegerin/RANKL ratio.All these results indicate that resveratrol can promote the proliferation of MC3T3-E1 cells and up-regulate the osteoprotegerin/RANKL ratio by activating the ERK5 signaling protein.
2.The Influence of Social Context on Perceptual Decision Making and Its Computational Neural Mechanisms
Yu-Pei LIU ; Yu-Shu WANG ; Bin ZHAN ; Rui WANG ; Yi JIANG
Progress in Biochemistry and Biophysics 2025;52(10):2568-2584
Perceptual decision making refers to the process by which individuals make choices and judgments based on sensory information, serving as a fundamental ability for human adaptation to complex environments. While traditional research has focused on perceptual decision making in isolated contexts, growing evidence highlights the profound influence of social contexts prevalent in real-world scenarios. As a crucial factor supporting individual survival and development, social context not only provides rich information sources but also shapes perceptual decision making through top-down processing mechanisms, prompting researchers to recognize the inherently social nature of human decisions. Empirical studies have demonstrated that social information, such as others’ choices or group norms, can systematically bias individuals’ perceptual decisions, often manifesting as conformity behaviors. Social influence can also facilitate performance under certain conditions, particularly when individuals can accurately identify and adopt high-quality social information. The impact of social context on perceptual decisions is modulated by a variety of external and internal factors, including group characteristics(e.g., group size, response consistency), attributes of peers (e.g., familiarity, social status, distinctions between human and artificial agents), as well as individual differences such as confidence, personality traits, and developmental stage. The motivations driving social influence encompass three primary mechanisms: improving decision accuracy through informational influence, gaining social acceptance through normative influence, and maintaining positive self-concept. Recent computational approaches have employed diverse theoretical frameworks to provide valuable insights into the cognitive mechanisms underlying social influence in perceptual decision making. Reinforcement learning models demonstrate how social feedback shapes future choices through reward-based updating. Bayesian inference frameworks describe how individuals integrate personal beliefs with social information based on their respective reliabilities, dynamically updating beliefs to optimize decisions under uncertainty. Drift diffusion models offer powerful tools to decompose social influence into distinct cognitive components, allowing researchers to differentiate between changes in perceptual processing and shifts in decision criteria. Collectively, these models establish a comprehensive methodological foundation for disentangling the multiple pathways by which social context shapes perceptual decisions. Neuroimaging and electrophysiological studies provide converging evidence that social context influences perceptual decision making through multi-level neural mechanisms. At early perceptual processing stages, social influence modulates sensory evidence accumulation in parietal cortex and directly alters primary visual cortex activity, while guiding selective attention to stimulus features consistent with social norms through attentional alignment mechanisms. At higher cognitive levels, the reward system (ventral striatum, ventromedial prefrontal cortex) is activated during group-consistent decisions; emotion-processing networks (anterior cingulate cortex, insula, amygdala) regulate experiences of social acceptance and rejection; and mentalizing-related brain regions (dorsomedial prefrontal cortex, temporoparietal junction) support inference of others’ mental states and social information integration. These neural circuits work synergistically to achieve top-down multi-level modulation of perceptual decision making. Understanding the mechanisms by which social context shapes perceptual decision making has broad theoretical and practical implications. These insights inform the optimization of collective decision-making, the design of socially adaptive human-computer interaction systems, and interventions for cognitive disorders such as autism spectrum disorder and anorexia nervosa. Future studies should combine computational modeling and neuroimaging approaches to systematically investigate the multi-level and dynamic nature of social influences on perceptual decision making.
4.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
5.Berg Balance Scale score is a valuable predictor of all-cause mortality among acute decompensated heart failure patients.
Yu-Xuan FAN ; Jing-Jing CHENG ; Zhi-Qing FAN ; Jing-Jin LIU ; Wen-Juan XIU ; Meng-Yi ZHAN ; Lin LUO ; Guang-He LI ; Le-Min WANG ; Yu-Qin SHEN
Journal of Geriatric Cardiology 2025;22(6):555-562
OBJECTIVE:
To investigate possible associations between physical function assessment scales, such as Short Physical Performance Battery (SPPB) and Berg Balance Scale (BBS), with all-cause mortality in acute decompensated heart failure (ADHF) patients.
METHODS:
A total of 108 ADHF patients were analyzed from October 2020 to October 2022, and followed up to May 2023. The association between baseline clinical characteristics and all-cause mortality was analyzed by univariate Cox regression analysis, while for SPPB and BBS, univariate Cox regression analysis was followed by receiver operating characteristic curves, in which the area under the curve represented their predictive accuracy for all-cause mortality. Incremental predictive values for both physical function assessments were measured by calculating net reclassification index and integrated discrimination improvement scores. Optimal cut-off value for BBS was then identified using restricted cubic spline plots, and survival differences below and above that cut-off were compared using Kaplan-Meier survival curves and the log-rank test. The clinical utility of BBS was measured using decision curve analysis.
RESULTS:
For baseline characteristics, age, female, blood urea nitrogen, as well as statins, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, or angiotensin receptor-neprilysin inhibitors, were predictive for all-cause mortality for ADHF patients. With respect to SPPB and BBS, higher scores were associated with lower all-cause mortality rates for both assessments; similar area under the curves were measured for both (0.774 for SPPB and 0.776 for BBS). Furthermore, BBS ≤ 36.5 was associated with significantly higher mortality, which was still applicable even adjusting for confounding factors; BBS was also found to have great clinical utility under decision curve analysis.
CONCLUSIONS
BBS or SPPB could be used as tools to assess physical function in ageing ADHF patients, as well as prognosticate on all-cause mortality. Moreover, prioritizing the improvement of balance capabilities of ADHF patients in cardiac rehabilitation regimens could aid in lowering mortality risk.
6.Linagliptin synergizes with cPLA2 inhibition to enhance temozolomide efficacy by interrupting DPP4-mediated EGFR stabilization in glioma.
Dongyuan SU ; Biao HONG ; Shixue YANG ; Jixing ZHAO ; Xiaoteng CUI ; Qi ZHAN ; Kaikai YI ; Yanping HUANG ; Jiasheng JU ; Eryan YANG ; Qixue WANG ; Junhu ZHOU ; Yunfei WANG ; Xing LIU ; Chunsheng KANG
Acta Pharmaceutica Sinica B 2025;15(7):3632-3645
The polymerase 1 and transcript release factor (PTRF)-cytoplasmic phospholipase A2 (cPLA2) phospholipid remodeling pathway facilitates tumor proliferation in glioma. Nevertheless, blockade of this pathway leads to the excessive activation of oncogenic receptors on the plasma membrane and subsequent drug resistance. Here, CD26/dipeptidyl peptidase 4 (DPP4) was identified through screening of CRISPR/Cas9 libraries. Suppressing PTRF-cPLA2 signaling resulted in the activation of the epidermal growth factor receptor (EGFR) pathway through phosphatidylcholine and lysophosphatidylcholine remodeling, which ultimately increased DPP4 transcription. In turn, DPP4 interacted with EGFR and prevented its ubiquitination. Linagliptin, a DPP4 inhibitor, facilitated the degradation of EGFR by blocking its interaction with DPP4. When combined with the cPLA2 inhibitor AACOCF3, it exhibited synergistic effects and led to a decrease in energy metabolism in glioblastoma cells. Subsequent in vivo investigations provided further evidence of a synergistic impact of linagliptin by augmenting the sensitivity of AACOCF3 and strengthening the efficacy of temozolomide. DPP4 serves as a novel target and establishes a constructive feedback loop with EGFR. Linagliptin is a potent inhibitor that promotes EGFR degradation by blocking the DPP4-EGFR interaction. This study presents innovative approaches for treating glioma by combining linagliptin with AACOCF3 and temozolomide.
7.Preliminary exploration of the pharmacological effects and mechanisms of icaritin in regulating macrophage polarization for the treatment of intrahepatic cholangiocarcinoma
Jing-wen WANG ; Zhen LI ; Xiu-qin HUANG ; Zi-jing XU ; Jia-hao GENG ; Yan-yu XU ; Tian-yi LIANG ; Xiao-yan ZHAN ; Li-ping KANG ; Jia-bo WANG ; Xin-hua SONG
Acta Pharmaceutica Sinica 2024;59(8):2227-2236
The incidence of intrahepatic cholangiocarcinoma (ICC) continues to rise, and there are no effective drugs to treat it. The immune microenvironment plays an important role in the development of ICC and is currently a research hotspot. Icaritin (ICA) is an innovative traditional Chinese medicine for the treatment of advanced hepatocellular carcinoma. It is considered to have potential immunoregulatory and anti-tumor effects, which is potentially consistent with the understanding of "Fuzheng" in the treatment of tumor in traditional Chinese medicine. However, whether ICA can be used to treat ICC has not been reported. Therefore, in this study, sgp19/kRas, an
8.Influence of Modified Shashen Maidong Decoction Combined with Camrelizumab Immunotherapy Plus Chemotherapy on the Efficacy,Survival Status,and Serum CYFRA21-1 and NSE Levels in Patients with Advanced Non-Small Cell Lung Cancer
Hai-Feng WANG ; Yi-Qun ZHAO ; Xiao-Li DU ; Lu LIU ; Bao-Song HOU ; Wen-Yan ZHAN
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):606-611
Objective To investigate the influence of modified Shashen Maidong Decoction combined with Camrelizumab immunotherapy plus chemotherapy on the efficacy,survival status and serum cytokeratin 19 fragment(CYFRA21-1)and neuron-specific enolase(NSE)levels in patients with advanced non-small cell lung cancer(NSCLC).Methods Forty patients with advanced NSCLC of lung-stomach yin deficiency with intense heat-toxin type were randomly divided into a control group and a study group,with 20 patients in each group.The patients in the control group were given Camrelizumab immunotherapy plus chemotherapy,and the patients in the study group were given modified Shashen Maidong Decoction combined with Camrelizumab immunotherapy plus chemotherapy,with 21 days as a course of treatment and for a total of 4 courses of treatment.The changes of serum NSE and CYFRA21-1 levels in the two groups before and after treatment were observed,and the clinical efficacy,survival status and the incidence of toxic and side effects were compared between the two groups.Results(1)After 4 courses of treatment,the total effective rate of the study group was 70.00%(14/20),which was significantly higher than that of the control group(9/20,45.00%),but the intergroup comparison(tested by chi-square test)showed that the difference was not statistically significant(P>0.05).(2)After 2 years of follow-up,the overall survival(OS),time to progression(TTP),and progression-free survival(PFS)of the patients in the study group were significantly prolonged compared with those in the control group(P<0.01).(3)After treatment,the serum NSE and CYFRA21-1 levels of the patients in the two groups were decreased compared with those before treatment(P<0.05),and the decrease of serum NSE and CYFRA21-1 levels in the study group was significantly superior to that in the control group(P<0.01).(4)The incidence of toxic and side effects in the study group was 25.00%(5/20),which was significantly lower than that of 65.00%(13/20)in the control group,and the intergroup comparison showed that the difference was statistically significant(P<0.05).Conclusion Modified Shashen Maidong Decoction combined with Camrelizumab immunotherapy plus chemotherapy has satisfactory therapeutic effect on patients with advanced NSCLC,which can reduce the toxic and side effects of chemotherapy,lower the level of serum tumor markers,and prolong the survival period and time to progression(TTP)of the patients.
9.Simultaneous content determination of seventeen constituents in Yangxue Ruanjian Capsules by UPLC-MS/MS
Yong-Ming LIU ; Shu-Sen LIU ; Yi-Zhe XIONG ; Xiang WANG ; Yu-Yun WU ; Jin LIU ; Ling-Yun PAN ; Guo-Qing DU ; Hong-Sheng ZHAN
Chinese Traditional Patent Medicine 2024;46(2):353-358
AIM To establish a UPLC-MS/MS method for the simultaneous content determination of liquiritin apioside,alibiflorin,swertiamarin,methyl gallate,benzoylpaeoniflorin,sweroside,6′-O-β-D-glucosylgentiopicroside,isoliquiritigenin,loganic acid,liquiritigenin,gallic acid,paeoniflorin,oxypaeoniflorin,gentiopicroside,glycyrrhizic acid,isoliquiritoside and liquiritin in Yangxue Ruanjian Capsules.METHODS The analysis was performed on a 40℃thermostatic Waters BEH C18column(2.1 mm×100 mm,1.7 μm),with the mobile phase comprising of 2 mmol/L ammonium acetate(containing 0.1%formic acid)-acetonitrile flowing at 0.3 mL/min in a gradient elution manner,and electron spray ionization source was adopted in negative ion scanning with multiple reaction monitoring mode.RESULTS Seventeen constituents showed good linear relationships within their own ranges(r>0.999 6),whose average recoveries were 91.33%-104.03%with the RSDs of 1.58%-3.50%.CONCLUSION This rapid,accurate and stable method can be used for the quality control of Yangxue Ruanjian Capsules.
10.Effect of Ultrasound-guided Superficial Parasternal Intercostal Plane Block on The Quality of Recovery in Patients Undergoing Sternotomy Cardiac Surgery
Yi LIAO ; Qi LI ; Xiaoe WANG ; Mingying ZHAN ; Li XIAO ; Yu CHEN
Journal of Sun Yat-sen University(Medical Sciences) 2024;45(2):297-309
ObjectiveThis study aims to explore the effect of ultrasound-guided superficial parasternal intercostal plane block on the quality of recovery and postoperative analgesia in patients undergoing sternotomy cardiac surgery. MethodsA total of 64 patients undergoing sternotomy cardiac surgery were selected for this study. They were randomly divided into two groups: one group received a superficial parasternal intercostal plane block with ropivacaine (the ropivacaine group), while the other was given normal saline (the normal saline group). The primary outcome was the Quality of Recovery-15 (QoR-15) score on postoperative day 1 in both groups, accompanied by a comparative analysis of the pain score and opioid usage. ResultsCompared with the normal saline group, the ropivacaine group exhibited a significantly higher QoR-15 score on postoperative day 1[(89.60±13.24) vs (81.18±12.78), P=0.012]. The numerical rating scale at rest was significantly lower[(3.03±0.72) vs (4.26±0.93), P<0.001], and the numerical rating scale during coughing was also significantly reduced [(4.40±0.89) vs (5.44±1.05), P<0.001]. Concurrently, the cumulative morphine equivalent consumption during the initial 24 h postoperatively was significantly lower in patients who were administered the ropivacaine [14.15 (4.95~30.00) mg vs 40.50 (19.25~68.18) mg, P=0.002], and there was also a notable decrease in the rescue analgesia [0.00 (0.00~0.00) mg vs 0.00 (0.00~100.00) mg, P=0.007]. ConclusionUltrasound-guided superficial parasternal intercostal plane block can significantly enhance the overall quality of recovery in patients undergoing sternotomy cardiac surgery on postoperative day 1. The technique contributes to improved postoperative analgesic effects and a reduction in opioid usage, thereby facilitating early postoperative recovery.

Result Analysis
Print
Save
E-mail