1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Impacts of ambient air pollutants on childhood asthma from 2019 to 2023: An analysis based on asthma outpatient visits of Nanjing Children's Hospital
Li WEI ; Xing GONG ; Lilin XIONG ; Yi ZHANG ; Fengxia SUN ; Wei PAN ; Changdi XU
Journal of Environmental and Occupational Medicine 2025;42(4):408-414
Background Asthma poses a serious threat to children's growth, development, and mental health, thus there has been an increasing focus on the control of asthma morbidity in children and the assessment of its risk factors. A growing body of research has found that exposure to ambient air pollutants an significatly increase the risk of childhood asthma. Objective To understand the changes of ambient air pollutant concentrations in Nanjing and asthma outpatient visits to Nanjing Children's Hospital, and to quantitatively analyze the effects of exposure to different ambient air pollutants on children's asthma outpatient visits. Methods Daily data of ambient air pollutants fine particulate matter (PM2.5), inhalable particle (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), meteorological factors (air temperature & relative humidity), and outpatient visits due to asthma in the hospital from January 1, 2019 to December 31, 2023 were collected, and a generalized additive model based on quasi poisson distributions was used to quantitatively analyze the short-term effects of ambient air pollutant exposure on outpatient visits due to asthma in the hospital. Results The annual average concentrations of PM2.5, PM10, SO2, and NO2 in Nanjing from 2019 to 2023 did not exceed the national limits. For single-day lagged effects, the single-pollutant model showed that the effects of PM2.5, PM10, NO2, and CO on children's asthma outpatient visits were greatest for every 10 units increase at lag0, with excess risk (ER) of 1.39% (95%CI: 0.65%, 2.14%), 1.46% (95%CI: 0.97%, 1.95%), 5.46% (95%CI: 4.36%, 6.57%), and 0.18% (95%CI: 0.11%, 0.26%), respectively, and SO2 reached the maximum effect at lag1, with an ER of 23.15% (95%CI: 13.57%, 33.53%) for each 10 units increase in concentration. Different pollutants reached their maximum cumulative lag effects at different time. The PM10, PM2.5, SO2, NO2, and CO showed the largest cumulative lag effects at lag01, lag01, lag02, lag02, and lag03, respectively, with ERs of 1.35% (95%CI: 0.77%, 1.92%), 0.96% (95%CI: 0.10%, 1.83%), 28.50% (95%CI: 15.49%, 42.98%), 6.92% (95%CI: 5.53%, 8.33%), and 0.31% (95%CI: 0.20%, 0.42%), respectively. The influences of PM2.5 and PM10 on outpatient visits due to asthma in the hospital became more pronounced with advancing age, while the associations with NO₂, SO₂, and CO were weakened as children grew older. Conclusion Ambient air pollutants (PM2.5, PM10, SO2, NO2, CO) can increase childhood asthma visits, and different pollutants have varied effects on the number of asthmatic children's visits at different ages.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
8.Lactate Transferase Function of Alanyl-transfer t-RNA Synthetase and Its Relationship With Exercise
Ying-Ying SUN ; Zheng XING ; Feng-Yi LI ; Jing ZHANG
Progress in Biochemistry and Biophysics 2025;52(6):1337-1348
Lactylation (Kla), a protein post-translational modification characterized by the covalent conjugation of lactyl groups to lysine residues in proteins, is widely present in living organisms. Since its discovery in 2019, it has attracted much attention for its role in regulating major pathological processes such as tumorigenesis, neurodegenerative diseases, and cardiovascular diseases. By mediating core biological processes such as signal transduction, epigenetic regulation, and metabolic homeostasis, lactylation contributes to disease progression. However, the lactylation donor lactyl-CoA has a low intracellular concentration, and the specific enzyme catalyzing lactylation is not yet clear, which has become an urgent issue in lactate research. A groundbreaking study in 2024 found that alanyl-transfer t-RNA synthetase 1/2 (AARS1/2), members of the aminoacyl-tRNA synthetase (aaRS) family, can act as protein lysine lactate transferases, modifying histones and metabolic enzymes directly with lactate as a substrate, without relying on the classical substrate lactyl-CoA, promoting a new stage in lactate research. Although exercise significantly increases lactate levels in the body and can induce changes in lactylation in multiple tissues and cells, the regulation of lactylation by exercise is not entirely consistent with lactate levels. Research has found that high-intensity exercise can induce upregulation of lactate at 37 lysine sites in 25 proteins of adipose tissue, while leading to downregulation of lactate at 27 lysine sites in 22 proteins. The level of lactate is not the only factor regulating lactylation through exercise. We speculate that the lactate transferase AARS1/2 play an important role in the process of lactylation regulated by exercise, and AARS1/2 should also be regulated by exercise. This review introduces the molecular biology characteristics, subcellular localization, and multifaceted biological functions of AARS, including its canonical roles in alanylation and editing, as well as its newly identified lactate transferase activity. We detail the discovery of AARS1/2 as lactylation catalysts and the specific process of them as lactate transferases catalyzing protein lactylation. Furthermore, we discuss the pathophysiological significance of AARS in tumorigenesis, immune dysregulation, and neuropathy, with a focus on exploring the expression regulation and possible mechanisms of AARS through exercise. The expression of AARS in skeletal muscle regulated by exercise is related to exercise time and muscle fiber type; the skeletal muscle AARS2 upregulated by long-term and high-intensity exercise catalyzes the lactylation of key metabolic enzymes such as pyruvate dehydrogenase E1 alpha subunit (PDHA1) and carnitine palmitoyltransferase 2 (CPT2), reducing exercise capacity and providing exercise protection; physiological hypoxia caused by exercise significantly reduces the ubiquitination degradation of AARS2 by inhibiting its hydroxylation, thereby maintaining high levels of AARS2 protein and exerting lactate transferase function; exercise induced lactate production can promote the translocation of AARS1 cytoplasm to the nucleus, exert lactate transferase function upon nuclear entry, regulate histone lactylation, and participate in gene expression regulation; exercise induced lactate production promotes direct interactions between AARS and star molecules such as p53 and cGAS, and is widely involved in the occurrence and development of tumors and immune diseases. Elucidating the regulatory mechanism of exercise on AARS can provide new ideas for improving metabolic diseases and promote health through exercise.
9.Medication rules of Astragali Radix in ancient Chinese medical books based on "disease-medicine-dose" pattern.
Jia-Lei CAO ; Lü-Yuan LIANG ; Yi-Hang LIU ; Zi-Ming XU ; Xuan WANG ; Wen-Xi WEI ; He-Jia WAN ; Xing-Hang LYU ; Wei-Xiao LI ; Yu-Xin ZHANG ; Bing-Qi WEI ; Xian-Qing REN
China Journal of Chinese Materia Medica 2025;50(3):798-811
This study employed the "disease-medicine-dose" pattern to mine the medication rules of traditional Chinese medicine(TCM) prescriptions containing Astragali Radix in ancient Chinese medical books, aiming to provide a scientific basis for the clinical application of Astragali Radix and the development of new medicines. The TCM prescriptions containing Astragali Radix were retrieved from databases such as Chinese Medical Dictionary and imported into Excel 2020 to construct the prescription library. Statical analysis were performed for the prescriptions regarding the indications, syndromes, medicine use frequency, herb effects, nature and taste, meridian tropism, dosage forms, and dose. SPSS statistics 26.0 and IBM SPSS Modeler 18.0 were used for association rules analysis and cluster analysis. A total of 2 297 prescriptions containing Astragali Radix were collected, involving 233 indications, among which sore and ulcer, consumptive disease, sweating disorder, and apoplexy had high frequency(>25), and their syndromes were mainly Qi and blood deficiency, Qi and blood deficiency, Yin and Yang deficiency, and Qi deficiency and collateral obstruction, respectively. In the prescriptions, 98 medicines were used with the frequency >25 and they mainly included Qi-tonifying medicines and blood-tonifying medicines. Glycyrrhizae Radix et Rhizoma, Angelicae Sinensis Radix, Ginseng Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, and Citri Reticulatae Pericarpium were frequently used. The medicines with high frequency mainly have warm or cold nature, and sweet, pungent, or bitter taste, with tropism to spleen, lung, heart, liver, and kidney meridians. In the treatment of sore and ulcer, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to promote granulation and heal up sores. In the treatment of consumptive disease, Astragali Radix was mainly used with the dose of 37.30 g and combined with Ginseng Radix et Rhizoma to tonify deficiency and replenish Qi. In the treatment of sweating disorder, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to consolidate exterior and stop sweating. In the treatment of apoplexy, Astragali Radix was mainly used with the dose of 7.46 g and combined with Glycyrrhizae Radix et Rhizoma to dispell wind and stop convulsions. Astragali Radix can be used in the treatment of multiple system diseases, with the effects of tonifying Qi and ascending Yang, consolidating exterior and stopping sweating, and expressing toxin and promoting granulation. According to the manifestations of different diseases, when combined with other medicines, Astragali Radix was endowed with the effects of promoting granulation and healing up sores, tonifying deficiency and Qi, consolidating exterior and stopping sweating, and dispelling wind and replenishing Qi. The findings provide a theoretical reference and a scientific basis for the clinical application of Astragali Radix and the development of new medicines.
Drugs, Chinese Herbal/history*
;
Humans
;
Medicine, Chinese Traditional/history*
;
History, Ancient
;
Astragalus Plant/chemistry*
;
China
;
Astragalus propinquus
10.Medicinal properties and compatibility application of aromatic traditional Chinese medicine monomer components based on action of volatile components against viral pneumonia.
Yin-Ming ZHAO ; Lin-Yuan WANG ; Jian-Jun ZHANG ; Chun WANG ; Yi LI ; Xiao-Fang WU ; Qi ZHANG ; Xing-Yu ZHAO ; Lin-Ze LI ; Rui-Lin LYU
China Journal of Chinese Materia Medica 2025;50(8):2013-2021
Aromatic traditional Chinese medicine(TCM) has played an important role against epidemics and viruses, and volatile components are the main components that exert the pharmacological effects of aromatic TCM. By screening the related monomer components in aromatic TCM against epidemic and viruses and analyzing and endowing TCM with medicinal properties based on its clinical application and pharmacological research according to the theoretical thinking of TCM, the key technical issues of compatibility of TCM monomer components were solved from a theoretical perspective, providing new ideas and methods for screening raw materials and formulas for the development of new TCM drugs. Based on the conditions of antiviral activity, clinical application foundation, definite therapeutic effect, and high safety, a gradient screening of aromatic TCM was carried out. Firstly, 30 aromatic TCM were screened from anti-epidemic literature and clinical trial formulas, and seven volatile monomers were further screened from them. Then, four monomer components with significant effects, namely patchouli alcohol, carvacrol, p-cymene, and eucalyptol were screened. By adopting the "four-step method for a systematic study of TCM properties", the four monomer components were endowed with medicinal properties, and compatibility and combination studies were conducted to explore the theoretical basis of monomer formulas and form monomer formulas guided by TCM theory. The screening results of volatile monomers in aromatic TCM against viral pneumonia included patchouli alcohol, carvacrol, p-cymene, and eucalyptol. The medicinal properties and compatibility theory of volatile monomer components in TCM were explored. Patchouli alcohol was the main herb, with a cool and pungent nature. It entered the lung meridian to dispel evil Qi and has the effects of aromatization, detoxification, and epidemic prevention. Carvacrol was a minister drug with a cool and pungent taste. It had the effects of aromatizing, moistening, and dissolving the exterior, as well as strengthening the spleen and stomach. p-Cymene was an adjunctive medicine with a mild and pungent nature. It entered the lungs and kidneys and had the effects of aromatic purification, cough relief, and asthma relief. Eucalyptol was also an adjunctive medicine with a pungent and warm taste. It had the functions of aromatic purification, cough relief, phlegm reduction, and pain relief. The combination of the four medicines had the effects of aromatizing, moistening, detoxifying, and epidemic prevention, as well as relieving cough and asthma and strengthening the spleen and stomach. They were used to treat viral pneumonia caused by upper respiratory tract viral infections, with symptoms such as chest tightness, cough, wheezing, fatigue, nasal congestion, runny nose, nausea, and vomiting. This study has laid a literature and theoretical foundation for further drug efficacy verification experiments, compatibility efficacy experiments, and subsequent product development and clinical applications, and it serves as an innovative practice that combines literature research, theoretical research, experimental research, and clinical practice to develop new products.
Drugs, Chinese Herbal/therapeutic use*
;
Antiviral Agents/pharmacology*
;
Humans
;
Pneumonia, Viral/virology*
;
Medicine, Chinese Traditional
;
Volatile Organic Compounds/pharmacology*
;
Animals

Result Analysis
Print
Save
E-mail