1.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
2.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
3.Effect of The Hydrophilic Amino Acids on Self-assembly Behavior of Short Bola-like Peptides
Xin-Xin GAO ; Yu HAN ; Yi-Lin ZHOU ; Xi-Ya CHEN ; Yu-Rong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1290-1301
ObjectiveBola-like short peptides exhibit novel self-assembly properties due to the formation of peptide dimers via hydrogen bonding interactions between their C-terminals. In this configuration, hydrophilic amino acids are distributed at both terminals, making these peptides behave similarly to Bola peptides. The electrostatic repulsive interactions arising from the hydrophilic amino acids at each terminal can be neutralized, thereby greatly promoting the lateral association of β-sheets. Consequently, assemblies with significantly larger widths are typically the dominant nanostructures for Bola-like peptides. To investigate the effect of hydrophilic amino acids on the self-assembly behavior of Bola-like peptides, the peptides Ac-RI3-CONH2 and Ac-HI3-CONH2 were designed and synthesized using the Bola-like peptide Ac-KI3-CONH2 as a template. Their self-assembly behavior was systematically examined. MethodsAtomic force microscopy (AFM) and transmission electron microscopy (TEM) were employed to characterize the morphology and size of the assemblies. The secondary structures of the assemblies were analyzed using circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Small-angle neutron scattering (SANS) was used to obtain detailed structural information at a short-length scale. Based on these experimental results, the effects of hydrophilic amino acids on the self-assembly behavior of Bola-like short peptides were systematically analyzed, and the underlying formation mechanism was explored. ResultsThe aggregation process primarily involved three steps. First, peptide dimers were formed through hydrogen bonding interactions between their C-terminals. Within these dimers, the hydrophilic amino acids K, R, and H were positioned at both terminals, enabling the peptides to self-assemble in a manner similar to Bola peptides. Next, β-sheets were formed via hydrogen bonding interactions along the peptide backbone. Finally, self-assemblies were generated through the lateral association of β-sheets. The results demonstrated that both Ac-KI3-CONH2 and Ac-RI3-CONH2 could self-assemble into double-layer nanotubes with diameters of approximately 200 nm. These nanotubes were formed by the edge fusion of helical ribbons, which initially emerged from twisted ribbons. Notably, the primary assemblies of these peptides exhibited opposite chirality: nanofibers formed by Ac-KI3-CONH2 displayed left-handed chirality, whereas those formed by Ac-RI3-CONH2 exhibited right-handed chirality. This reversal in torsional direction was primarily attributed to the different abilities of K and R to form hydrogen bonds with water. In contrast, Ac-HI3-CONH2 formed narrower twisted ribbons with a significantly reduced width of approximately 30 nm, which was attributed to the strong steric hindrance caused by the imidazole rings. The multilayer height of these ribbons was mainly due to the unique structure of the imidazole rings, which can function as both hydrogen bond donors and acceptors, thereby promoting aggregate growth in the vertical direction. ConclusionThe final morphology of the self-assemblies resulted from a delicate balance of various non-covalent interactions. By altering the types of hydrophilic amino acid residues in Bola-like short peptides, the relative strength of non-covalent interactions that drive assembly formation can be effectively regulated, allowing precise control over the morphology and chirality of the assemblies. This study provides a simple and effective approach for constructing diverse self-assemblies and lays a theoretical foundation for the development of functional biomaterials.
4.Association between cannabis use and risk of gynecomastia: commentary on "Gynecomastia in adolescent males: current understanding of its etiology, pathophysiology, diagnosis, and treatment"
Jia-Lin WU ; Jun-Yang LUO ; Xin-Yi DENG ; Zai-Bo JIANG
Annals of Pediatric Endocrinology & Metabolism 2025;30(1):52-53
5.Association between cannabis use and risk of gynecomastia: commentary on "Gynecomastia in adolescent males: current understanding of its etiology, pathophysiology, diagnosis, and treatment"
Jia-Lin WU ; Jun-Yang LUO ; Xin-Yi DENG ; Zai-Bo JIANG
Annals of Pediatric Endocrinology & Metabolism 2025;30(1):52-53
6.Association between cannabis use and risk of gynecomastia: commentary on "Gynecomastia in adolescent males: current understanding of its etiology, pathophysiology, diagnosis, and treatment"
Jia-Lin WU ; Jun-Yang LUO ; Xin-Yi DENG ; Zai-Bo JIANG
Annals of Pediatric Endocrinology & Metabolism 2025;30(1):52-53
7.Effects of sodium acetate on lowering uric acid and renal protection in mice with hyperuricemic nephropathy
Xue-Man LIN ; Shi-Qi ZHONG ; Yong-Mei LI ; Xiao-Yi QIN ; He-Yang JIANG ; Jia-Xin ZHOU ; Jian-Xin PANG ; Ting WU
The Chinese Journal of Clinical Pharmacology 2024;40(15):2222-2226
Objective To investigate the renal protective effect and mechanism of sodium acetate(Ace)on hyperuricemic nephropathy(HN)in mice.Methods Uric acid nephropathy mice model was prepared by intraperitoneal injection of potassium oxonate combined with adenine gavage.Mice were divided into blank control group(0.9%NaCl+0.5%carboxymethyl cellulose sodium),Ace group(200 mmol·L-1 Ace+0.5%carboxymethyl cellulose sodium),model group(0.9%NaCl+350 mg·kg-1 potassium oxonate+70 mg·kg-1 adenine),and experimental group(based on model group with additional 200 mmol·L-1 Ace).Serum and urine uric acid(UA)and serum creatinine(SCr)levels were observed in each group.Real-time fluorescence quantitative reverse transcription-polymerase chain reaction(qRT-PCR)was used to detect the expression levels of kidney injury molecule-1(Kim-1)and anti-aging gene Klotho,renal fibrosis markers Collagen Ⅰ and Fibronectin,intestinal inflammation-related factors interleukin-1 β(IL-1 β),and mRNA expression levels of tight junction proteins Zo-1.Results The serum UA levels of blank control group,Ace group,model group,and experimental group mice were(259.52±24.40),(227.71±35.91),(604.06±73.55),and(496.24±30.16)μmol·L-1,respectively;SCr levels were(16.85±0.40),(16.18±0.94),(22.38±1.56),and(19.78±1.43)μmol·L-1;Kim-1 mRNA relative expression levels were 1.04±0.25,1.17±0.28,13.00±2.87,and 4.24±3.92;Klotho mRNA relative expression levels were 1.04±0.15,1.02±0.18,0.43±0.12,and 0.69±0.12;Collagen Ⅰ mRNA relative expression levels were 1.05±0.15,1.02±0.18,3.19±1.09,and 1.61±0.55;Fibronectin mRNA relative expression levels were 1.07±0.18,1.02±0.25,7.86±2.40,and 3.34±2.10;intestinal IL-1β mRNA relative expression levels were 1.00±0.01,1.01±0.03,2.55±0.63,and 1.21±0.28;intestinal Zo-1 mRNA relative expression levels were 1.00±0.07,1.07±0.09,0.54±0.20,and 0.92±0.17.The above indicators in blank control group compared with model group,and experimental group compared with model group,all showed statistically significant differences(P<0.05,P<0.01,P<0.001).Conclusion Sodium acetate can effectively reduce UA levels in HN mice,significantly improve renal injury and fibrosis,and its mechanism may be related to the improvement of intestinal inflammatory response and up-regulation of intestinal Zo-1/Occuludin pathway to reduce intestinal mucosal permeability.
8.The Characteristics of Auditory Brainstem Response Waveform in Autistic Children with Normal Hearing
Zhihan LIN ; Xin ZHOU ; Xuetong WANG ; Ying LI ; Xueyao WANG ; Xin JIN ; Zhipeng ZHENG ; Yi ZHOU ; Jifeng SHI ; Haihong LIU
Journal of Audiology and Speech Pathology 2024;32(2):118-123
Objective To investigate the effect of auditory brainstem response(ABR)in clinical detection and severity assessment of autism spectrum disorder(ASD)in children with normal hearing.Methods ① A total of 55 autistic children(110 ears)with normal hearing and 55 children(110 ears)with typical development(TD)who did not differ in sex composition ratio and average monthly age were divided into four sub-groups according to age:≤24 months group(22 ears),25~36 months group(40 ears),37~48 months group(28 ears)and>48 months group(20 ears).The ABR latencies and interpeak latencies were compared between ASD children and age-matched TD children.② ASD children were graded by severity according to the Diagnostic and Statistical Manual of Mental Dis-orders(DSM-V),and the correlations between the ABR latencies and interpeak latencies in autistic children with normal hearing and the severity grading were studied.Results ① No statistically significant differences in ABR wave latencies and interpeak latencies were found in autistic children with normal hearing under 24 months of age compared to age-matched TD children(P>0.05).② Compared with children with TD,autistic children with nor-mal hearing at 25~36 months of age had significantly longer wave Ⅲ latencies and the interpeak latencies of Ⅰ-Ⅲ andⅠ-Ⅴ;the significantly longer wave Ⅲ,Ⅴ latencies,the interpeak latencies of Ⅰ-Ⅲ,Ⅲ-Ⅴ and Ⅰ-Ⅴ in autistic chil-dren with normal hearing at 37~48 months of age.Autistic children with normal hearing in the>48 months group had significantly longer wave Ⅴ latencies and interpeak latencies of Ⅲ-Ⅴ,Ⅰ-Ⅴ than age-matched TD children(P<0.05).③ The higher the ASD severity grading the longer the wave Ⅲ and V latencies and the longer interpeak latencies of Ⅰ-Ⅲ,Ⅲ-Ⅴ,and Ⅰ-Ⅴ(P<0.05).Conclusion Differences in the level of auditory brainstem pathway de-velopment emerged at 25 months of age,and autistic children with normal hearing had significantly lower levels of auditory brainstem development than age-matched TD children.There were correlations between the latencies and interpeak latencies of ABR in autistic children with normal hearing and the severity grading.
9.Advances in HIV-1 latency-regulating agents
Jiao-jiao DAI ; Xiang-yi JIANG ; Da FENG ; Hao LIN ; Xin-yong LIU ; Peng ZHAN
Acta Pharmaceutica Sinica 2024;59(4):840-852
At present, there is no cure for acquired immune deficiency syndrome (AIDS) due to HIV-1 latent reservoirs. Therefore, it urgently requires novel HIV-1 latency-regulating agents with high potency, low toxicity and favorable drug-like properties to achieve a functional cure for AIDS. Herein, we reviewed the advances in HIV-1 latency-regulating agents since 2019, including the drug discovery strategies, bioactivities, and mechanisms of these compounds. It is of great guiding significance in the development of latency-regulating agents with clinical value.
10.Research on species identification of commercial medicinal and food homology scented herbal tea
Jing SUN ; Zi-yi HUANG ; Si-qi LI ; Yu-fang LI ; Yan HU ; Shi-wen GUO ; Ge HU ; Chuan-pu SHEN ; Fu-rong YANG ; Yu-lin LIN ; Tian-yi XIN ; Xiang-dong PU
Acta Pharmaceutica Sinica 2024;59(9):2612-2624
The adulteration and counterfeiting of herbal ingredients in medicinal and food homology (MFH) have a serious impact on the quality of herbal materials, thereby endangering human health. Compared to pharmaceutical drugs, health products derived from traditional Chinese medicine (TCM) are more easily accessible and closely integrated into consumers' daily life. However, the authentication of the authenticity of TCM ingredients in MFH has not received sufficient attention. The lack of clear standards emphasizes the necessity of conducting systematic research in this area. This study utilized DNA barcoding technology, combining ITS2,

Result Analysis
Print
Save
E-mail