1.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
2.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
3.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
4.Network pharmacology-based mechanism of combined leech and bear bile on hepatobiliary diseases
Chen GAO ; Yu-shi GUO ; Xin-yi GUO ; Ling-zhi ZHANG ; Guo-hua YANG ; Yu-sheng YANG ; Tao MA ; Hua SUN
Acta Pharmaceutica Sinica 2025;60(1):105-116
In order to explore the possible role and molecular mechanism of the combined action of leech and bear bile in liver and gallbladder diseases, this study first used network pharmacology methods to screen the components and targets of leech and bear bile, as well as the related target genes of liver and gallbladder diseases. The selected key genes were subjected to interaction network and GO/KEGG enrichment analysis. Then, using sodium oleate induced HepG2 cell lipid deposition model and
5.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
6.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
7.Shikonin attenuates blood–brain barrier injury and oxidative stress in rats with subarachnoid hemorrhage by activating Sirt1/ Nrf2/HO-1 signaling
Guanghu LI ; Yang'e YI ; Sheng QIAN ; Xianping XU ; Hao MIN ; Jianpeng WANG ; Pan GUO ; Tingting YU ; Zhiqiang ZHANG
The Korean Journal of Physiology and Pharmacology 2025;29(3):283-291
Subarachnoid hemorrhage (SAH) is a serious intracranial hemorrhage characterized by acute bleeding into the subarachnoid space. The effects of shikonin, a natural compound from the roots of Lithospermum erythrorhizon, on oxidative stress and blood–brain barrier (BBB) injury in SAH was evaluated in this study. A rat model of SAH was established by endovascular perforation to mimic the rupture of intracranial aneurysms. Rats were then administered 25 mg/kg of shikonin or dimethylsulfoxide after surgery. Brain edema, SAH grade, and neurobehavioral scores were measured after 24 h of SAH to evaluate neurological impairment. Concentrations of the oxidative stress markers superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA) in the brain cortex were determined using the corresponding commercially available assay kits. Evans blue staining was used to determine BBB permeability. Western blotting was used to quantify protein levels of tight junction proteins zonula occludens-1, Occludin, and Claudin-5. After modeling, the brain water content increased significantly whereas the neurobehavioral scores of rats with SAH decreased prominently. MDA levels increased and the levels of the antioxidant enzymes GSH and SOD decreased after SAH. These changes were reversed after shikonin administration. Shikonin treatment also inhibited Evans blue extravasation after SAH. Furthermore, reduction in the levels of tight junction proteins after SAH modeling was rescued after shikonin treatment. In conclusion, shikonin exerts a neuroprotective effect after SAH by mitigating BBB injury and inhibiting oxidative stress in the cerebral cortex.
8.Study on bioequivalence evaluation of Pemirolast potassium tablets in Chinese healthy volunteers on an empty stomach/after meals
Yi-Ming MA ; Wang HU ; Feng ZHANG ; Wen ZHANG ; Sheng-Long ZHAO ; Yang CAO ; Jing XIE ; Huan ZHOU ; Shun-Wang HUANG
Chinese Pharmacological Bulletin 2024;40(6):1075-1081
Aim To compare the pharmacokinetics of pemirolast potassium tablets in healthy subjects in Chi-na under single fasting and postprandial conditions,and to evaluate the bioequivalence of the test prepara-tion(T)and the reference preparation(R).Methods A randomized,open-ended,single-dose,two-cycle,double-cross bioequivalence trial design was adopted,and 26 and 30 subjects were enrolled in the fasting group and the postprandial group,respectively,and 10 mg of the test preparation and the reference preparation were taken in the fasting or postprandial state each cy-cle,and venous blood was collected at the designed time points before and after the administration cycle.The concentration of pemirolast potassium in plasma was determined by LC-MS/MS method,and the phar-macokinetic parameters were calculated with PhoenixTM WinNonlin ?(8.3)software,and the bioequivalence analysis of the two preparations was performed.Re-sults The t1/2 of the test preparation and the reference preparation was(4.44±0.91)h and(4.49±0.93)h,respectively;the median tmax was(1.96±1.29)h and(2.18±1.25)h,respectively;the Cmax was(867.12±205.56)μg·L-1 and(863.35±172.03)μg·L-1,respectively;the AUC0-t was(5 513.23±1463.67)h·μg·L-1 and(5 661.32±1 628.65)h·μg·L-1,respectively;AUC0_∞ was(5 699.81±1477.68)h·μg·L-1 and(5 849.44±1 644.75)h·μg·L-1,respectively.The statistical results of the 90%confidence intervals of the main pharmacokinetic parameters Cmax,AUC0-t,and AUC0-∞ was 92.49%~107.53%,94.71%~100.67%and 95.28%~100.27%,respectively,all of which were within the range of 80.00%~125.00%,and the safety of the tested preparation and the reference preparation was good when taken orally on an empty stomach.The t1/2 of single oral administration after prandial administra-tion of the tested preparation and the reference prepara-tion was(4.46±0.78)and(4.51±0.84)h,respec-tively;the median tmax was(3.08±1.36)h and(3.28±1.28)h,respectively;the Cmax was(683.83±111.87)μg·L-1 and(689.77±110.24)μg·L-1,respectively;the AUC0-t was(5 695.99±1566.05)h·μg·L-1 and(5 773.60±1 551.04)h·μg·L-1,respectively;the AUC0-∞ was(5 914.06±1 551.86)h·μg·L-1 and(5 967.30±1552.89)h·μg·L-1,respectively.The 90%confi-dence interval of Cmax,AUC0-t,and AUC0-∞ was 93.56%~104.69%,96.43%~100.83%,and 97.29%~101.14%,respectively,which was in the range of 80.00%~125.00%,and the safety of the tested preparation and the reference preparation was good after meals.Conclusion In the state of fasting and postprandial single oral administration,the two kinds of pemirolast potassium tablets have good bio-equivalence.
9.Analysis of the risk factors for delayed union of extra-articular fractures of the middle and lower third of the tibia treated by locking plate
Wei HE ; Zhao-Guang XU ; Wei-Shen LIN ; Fa-Sheng HE ; Jian-Xin ZHANG ; Yi-Qiang ZHOU
China Journal of Orthopaedics and Traumatology 2024;37(2):148-152
Objective To investigate the risk factors for delayed union of extra-articular fractures of the middle and lower third of the tibia treated by locking plate.Methods Total of 135 patients of extra-articular fractures of the middle and lower third of the tibia from January 2013 to December 2018 were retrospectively analyzed,including 85 males and 50 females,ranged from 19 to 80 years old.All cases were treated with locking plates.The patients were divided into union group and delayed union group ac-cording to the condition of fracture union.The risk factors of delayed healing were determined by univariate analysis of 14 factors that might affect fracture healing first,then the factors with significance were analyzed by binary Logistic regression.Results There were 13 patients of delayed union,and the rate of delayed union was 9.63%.Univariate analysis showed that delayed union was associated with age,smoking,reduction method,anemia and time of preoperative preparation.Regression analysis showed thatage[OR=0.849,95%CI(0.755,0.954),P=0.006],smoking[OR=0.020,95%CI(0.002,0.193),P=0.001],reduction method[OR=23.924,95%CI(2.210,258.943),P=0.009],anemia[OR=0.016,95%CI(0.001,0.289),P=0.005]were the con-tributory factors for delayed union.Conclusion Young age,smoking,closed reduction and anemia are the risk factors for de-layed union of extra-articular fractures of the middle and lower third of the tibia treated by locking plate.
10.The Role of NK Cells in Allogeneic Hematopoietic Stem Cell Micro-Transplantation for Acute Myeloid leukemia
Ru-Yu LIU ; Chang-Lin YU ; Jian-Hui QIAO ; Bo CAI ; Qi-Yun SUN ; Yi WANG ; Tie-Qiang LIU ; Shan JIANG ; Tian-Yao ZHANG ; Hui-Sheng AI ; Mei GUO ; Kai-Xun HU
Journal of Experimental Hematology 2024;32(2):546-555
Objective:To explore the role of NK cells in allogeneic hematopoietic stem cell micro-transplantation(MST)in the treatment of patients with acute myeloid leukemia(AML).Methods:Data from 93 AML patients treated with MST at our center from 2013-2018 were retrospectively analyzed.The induction regimen was anthracycline and cytarabine combined with peripheral blood stem cells transplantation mobilization by granulocyte colony stimulating factor(GPBSC),followed by 2-4 courses of intensive treatment with medium to high doses of cytarabine combined with GPBSC after achieving complete remission(CR).The therapeutic effects of one and two courses of MST induction therapy on 42 patients who did not reach CR before transplantation were evaluated.Cox proportional hazards regression analysis was used to analyze the impact of donor NK cell dose and KIR genotype,including KIR ligand mismatch,2DS1,haplotype,and HLA-Cw ligands on survival prognosis of patients.Results:Forty-two patients received MST induction therapy,and the CR rate was 57.1%after 1 course and 73.7%after 2 courses.Multivariate analysis showed that,medium and high doses of NK cells was significantly associated with improved disease-free survival(DFS)of patients(HR=0.27,P=0.005;HR=0.21,P=0.001),and high doses of NK cells was significantly associated with improved overall survival(OS)of patients(HR=0.15,P=0.000).Donor 2DS1 positive significantly increases OS of patients(HR=0.25,P=0.011).For high-risk patients under 60 years old,patients of the donor-recipient KIR ligand mismatch group had longer DFS compared to the nonmismatch group(P=0.036);donor 2DS1 positive significantly prolonged OS of patients(P=0.009).Conclusion:NK cell dose,KIR ligand mismatch and 2DS1 influence the therapeutic effect of MST,improve the survival of AML patients.

Result Analysis
Print
Save
E-mail